Electrical and Computer Engineering Seminar Series

Flocking dynamics promoted by heterogeneity

Arthur Montanari

Center for **Network Dynamics**

Department of Physics and Astronomy

Northwestern University

December 4, 2024

NATIONAL GEOGRAPHIC

We know a lot of factual information about the starling—its size and voice, where it lives, how it breeds and migrates—but what remains a mystery is how it flies in murmurations, or flocks, without colliding.

Computer animations

Computer Graphics, Volume 21, Number 4, July 1987

Flocks, Herds, and Schools: A Distributed Behavioral Model

Craig W. Reynolds Symbolics Graphics Division

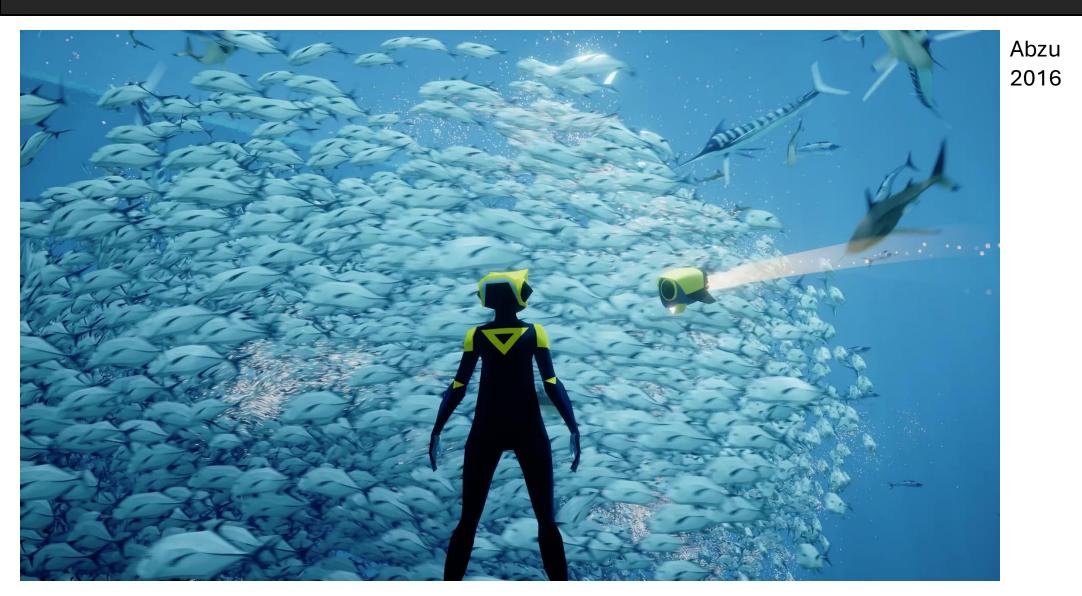
1401 Westwood Boulevard Los Angeles, California 90024

(Electronic mail: cwr@Symbolics.COM)

Boids: state of the art

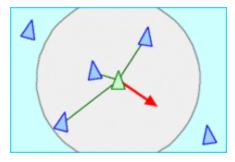
Batman Returns 1992

Boids: state of the art

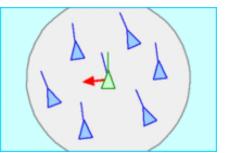


Reynold's rules for flocking

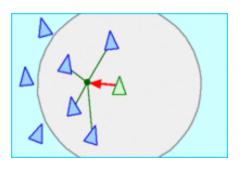
agents must:



1) avoid collisions with each other (separation)



2) match their velocity to nearby mates (alignment)



3) move towards the center of mass of its neighbors (cohesion)

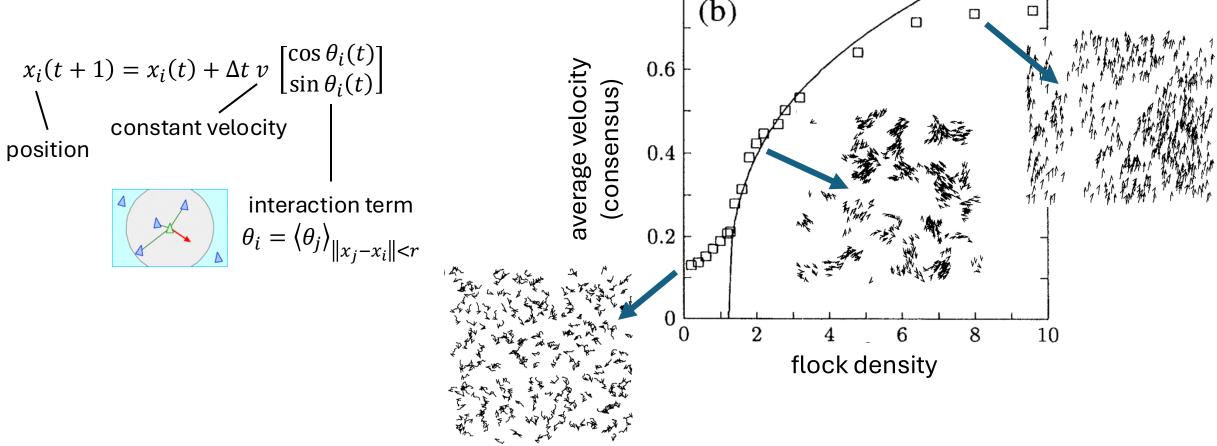
The Physics community

What are the critical transitions?

T Vicsek, Physical Review Letters (1995).

The Physics community

What are the critical transitions?



0.8

The Engineering community

Which conditions lead to stability?

$$\dot{q}_{i} = p_{i}$$

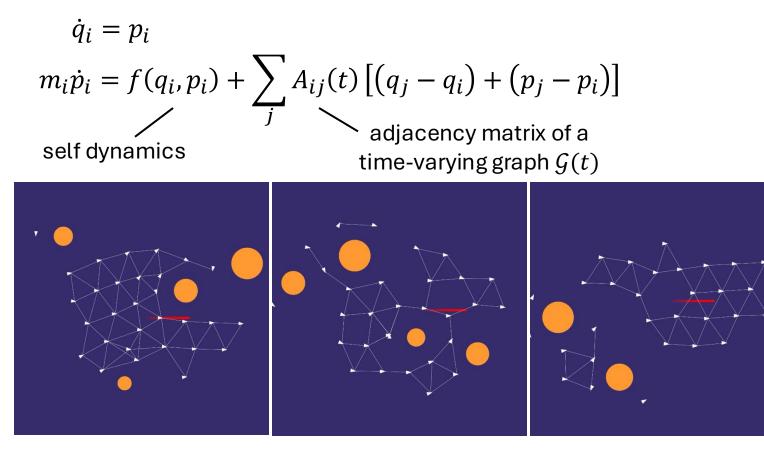
$$m_{i}\dot{p}_{i} = f(q_{i}, p_{i}) + \sum_{j} A_{ij}(t) \left[\left(q_{j} - q_{i} \right) + \left(p_{j} - p_{i} \right) \right]$$

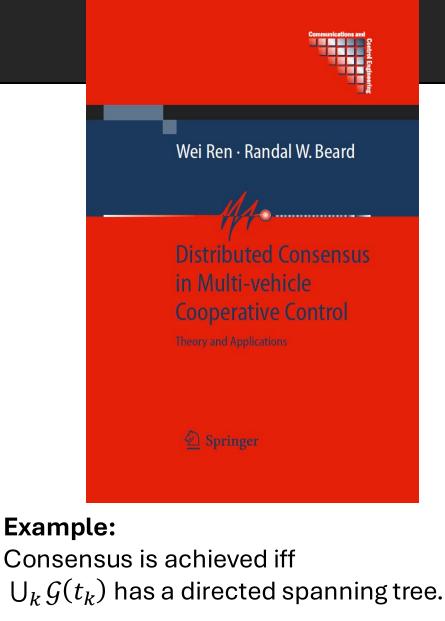
$$self \, dynamics$$

$$adjacency \, matrix \, of \, a \\ time-varying \, graph \, \mathcal{G}(t)$$

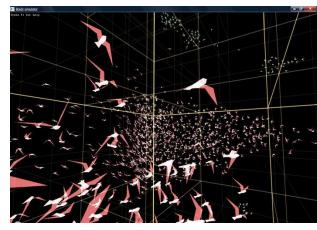
The Engineering community

Which conditions lead to stability?





What are the mechanisms?



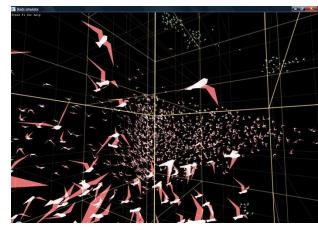
boids, phase transition model (phenomenological)

$$\dot{x}_i = f(x_i) + \text{interaction}$$

drones, autonomous vehicles (first principles)

 $\dot{q}_i = p_i$ $m_i \dot{p}_i = f(q_i, p_i) + \text{interaction}$

What are the mechanisms?



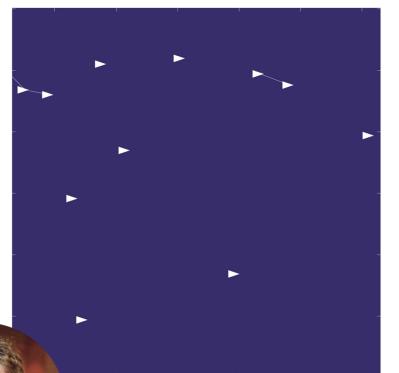
boids, phase transition model (phenomenological)

 $\dot{x}_i = f(x_i) + \text{interaction}$

drones, autonomous vehicles (first principles)

 $\dot{q}_i = p_i$ $m_i \dot{p}_i = f(q_i, p_i) + \text{interaction}$

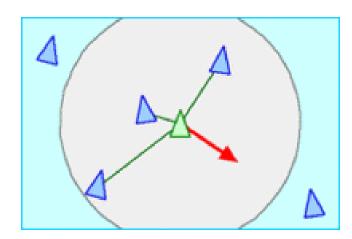
The rules of computation



lain Couzin, interview at *Quanta Magazine*

If we use advanced imaging tools to quantify, to measure, these waves of turning, it results in a wave of propagation that's around 10 times faster than the maximum speed of the predator itself. So individuals can respond to a predator that they don't even see.

What does biology tell us?



How agents interact with their neighborhood?

Size of the neighborhood depends on... distance? (metric distance) number of peers? (topological distance)

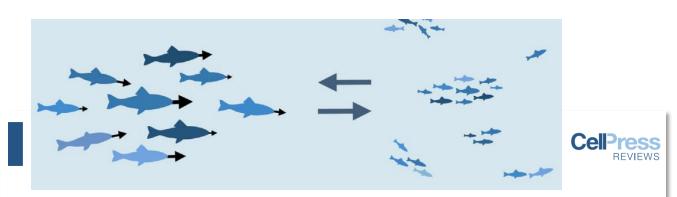
Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion

Sara Brin Rosenthal^{a,1}, Colin R. Twomey^{b,1}, Andrew T. Hartnett^a, Hai Shan Wu^b, and Iain D. Couzin^{b,c,d,2}

Departments of ^aPhysics and ^bEcology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; ^cDepartment of Collective Behaviour, Max Planck Institute for Ornithology, D-78547 Konstanz, Germany; and ^dChair of Biodiversity and Collective Behavior, Department of Biology, University of Konstanz, D-78547 Konstanz, Germany

Edited by Gene E. Robinson, University of Illinois at Urbana–Champaign, Urbana, IL, and approved February 24, 2015 (received for review October 22, 2014)

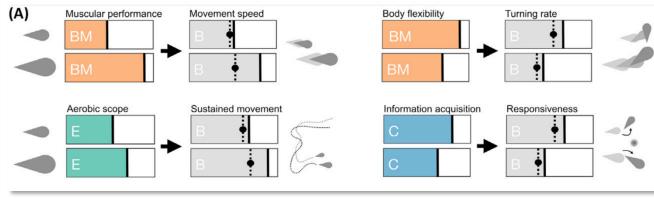
What does biology tell us?

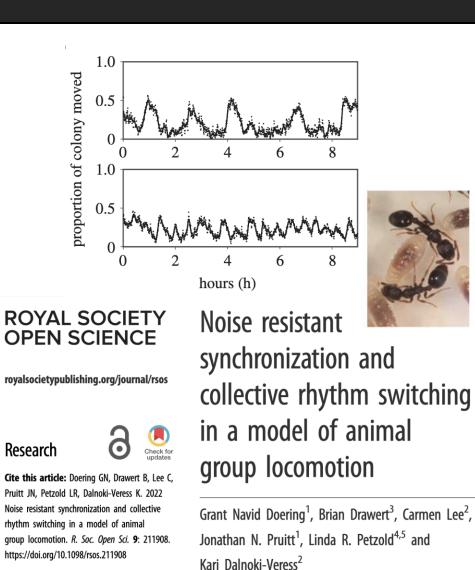


Review

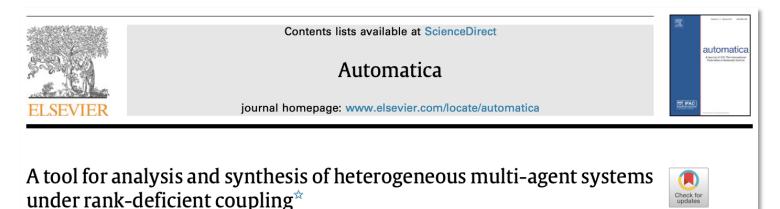
The Role of Individual Heterogeneity in Collective Animal Behaviour

Jolle W. Jolles, 1,2,3,7,@,* Andrew J. King, 4,5 and Shaun S. Killen⁶





Yet, the Engineering community...



Jin Gyu Lee^a, Hyungbo Shim^{b,*}

^a Control Group, Department of Engineering, University of Cambridge, Cambridge, United Kingdom ^b ASRI, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea

Y. Zheng¹ Y. Zhu¹ L. Wang²

¹Center for Complex Systems, School of Mechano-electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China

²Center for Systems and Control, College of Engineering and Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, People's Republic of China E-mail: zhengyuanshi2005@163.com

Annual Reviews in Control

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/arcontrol

Cooperative control of heterogeneous multi-agent systems under spatiotemporal constraints $^{\bigstar}$

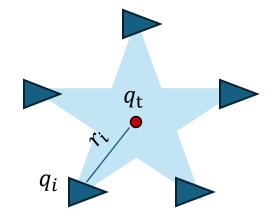
Fei Chen^{*}, Mayank Sewlia, Dimos V. Dimarogonas Division of Decision and Control Systems, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden

Take-home message

Consensus can be achieved and enhanced not despite, but **because of heterogeneity**.

Flocking model for target tracking

$$egin{aligned} \dot{m{q}}_i &= m{p}_i, \ m_i \dot{m{p}}_i &= \dot{m{p}}_{ ext{t}} - b_i \left(m{q}_i - m{q}_{ ext{t}} - m{r}_i
ight) - \gamma c_i \left(m{p}_i - m{p}_{ ext{t}}
ight) \ &+ \sum_{j=1}^N A_{ij}(t) \Big[(m{q}_j - m{r}_j) - (m{q}_i - m{r}_i) + \gamma (m{p}_j - m{p}_i) \Big] \end{aligned}$$



pre-specified formation:

 $\boldsymbol{q}_i(t) \rightarrow \boldsymbol{q}_{\mathrm{t}}(t) + \boldsymbol{r}_i$ trajectory tracking: $p_i(t) \rightarrow p_t(t)$ as $t \rightarrow \infty$

Flocking model for target tracking

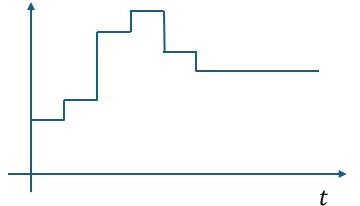
$$egin{split} \dot{oldsymbol{q}}_i &= oldsymbol{p}_i,\ m_i \dot{oldsymbol{p}}_i &= \dot{oldsymbol{p}}_{ ext{t}} - b_i \left(oldsymbol{q}_i - oldsymbol{q}_{ ext{t}} - oldsymbol{r}_i
ight) - \gamma c_i \left(oldsymbol{p}_i - oldsymbol{p}_{ ext{t}}
ight) \ &+ \sum_{j=1}^N A_{ij}(t) \Big[(oldsymbol{q}_j - oldsymbol{r}_j) - (oldsymbol{q}_i - oldsymbol{r}_i) + \gamma (oldsymbol{p}_j - oldsymbol{p}_i) \Big] \end{split}$$

pre-specified formation: trajectory tracking:

$$egin{aligned} oldsymbol{q}_i(t) &
ightarrow oldsymbol{q}_{ ext{t}}(t) + oldsymbol{r}_i \ oldsymbol{p}_i(t) &
ightarrow oldsymbol{p}_{ ext{t}}(t) ext{ as } t
ightarrow \infty \end{aligned}$$

adjacency matrix: all-to-all, weighted, time dependent, piecewise constant

$$\tilde{A}_{ij}(t) = K/(\rho^2 + \|\boldsymbol{q}_i(t) - \boldsymbol{q}_j(t)\|^2)^{\beta}$$



Flocking model for target tracking

$$egin{aligned} \dot{m{q}}_i &= m{p}_i, \ m_i \dot{m{p}}_i &= \dot{m{p}}_{ ext{t}} - m{b}_i \left(m{q}_i - m{q}_{ ext{t}} - m{r}_i
ight) - \gamma c_i \left(m{p}_i - m{p}_{ ext{t}}
ight) \ &+ \sum_{j=1}^N A_{ij}(t) \Big[(m{q}_j - m{r}_j) - (m{q}_i - m{r}_i) + \gamma (m{p}_j - m{p}_i) \Big] \end{aligned}$$

$$q_t$$

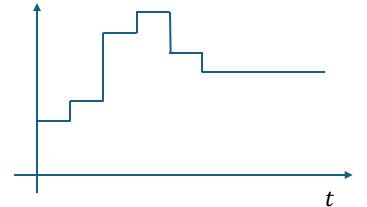
 q_i

pre-specified formation: trajectory tracking:

$$egin{aligned} oldsymbol{q}_i(t) &
ightarrow oldsymbol{q}_{ ext{t}}(t) + oldsymbol{r}_i \ oldsymbol{p}_i(t) &
ightarrow oldsymbol{p}_{ ext{t}}(t) ext{ as } t
ightarrow \infty \end{aligned}$$

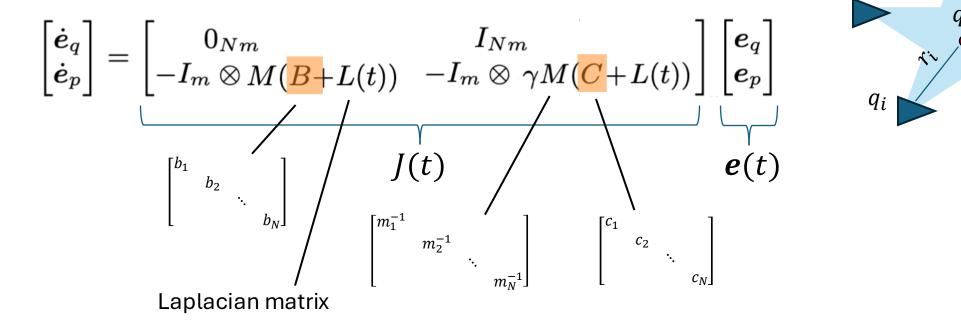
adjacency matrix: all-to-all, weighted, time dependent, piecewise constant

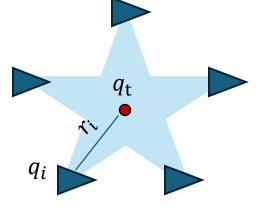
$$\tilde{A}_{ij}(t) = K/(\rho^2 + \|\boldsymbol{q}_i(t) - \boldsymbol{q}_j(t)\|^2)^{\beta}$$



Dynamics of the tracking error

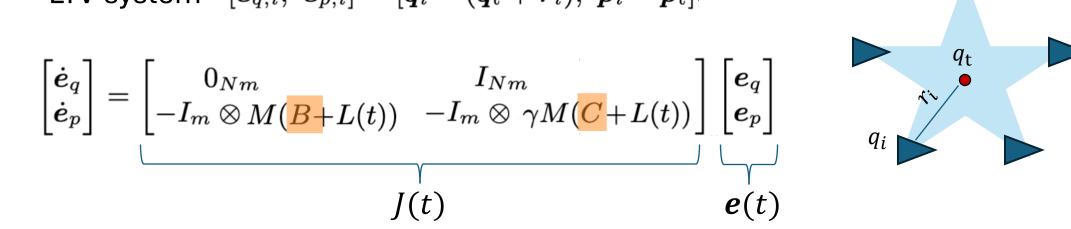
LTV system
$$[\boldsymbol{e}_{q,i}, \ \boldsymbol{e}_{p,i}] = [\boldsymbol{q}_i - (\boldsymbol{q}_{\mathrm{t}} + \boldsymbol{r}_i), \ \boldsymbol{p}_i - \boldsymbol{p}_{\mathrm{t}}]_{\mathrm{t}}$$

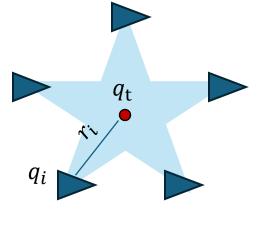




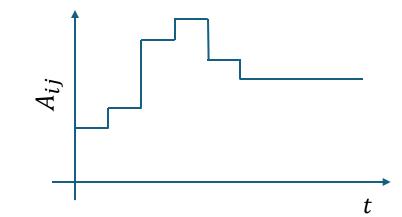
Dynamics of the tracking error

LTV system
$$[oldsymbol{e}_{q,i}, oldsymbol{e}_{p,i}] = [oldsymbol{q}_i - (oldsymbol{q}_{ ext{t}} + oldsymbol{r}_i), oldsymbol{p}_i - oldsymbol{p}_{ ext{t}}]$$





$$\|\boldsymbol{e}(t)\| \leq \eta \exp\left\{\sum_{k=0}^{t/T} \Lambda_{\max}(J(t_k))T\right\} \|\boldsymbol{e}(0)\|$$



Optimal flocking dynamics

$$\|\boldsymbol{e}(t)\| \leq \eta \exp\left\{\sum_{k=0}^{t/T} \Lambda_{\max}(J(t_k))T\right\} \|\boldsymbol{e}(0)\|$$

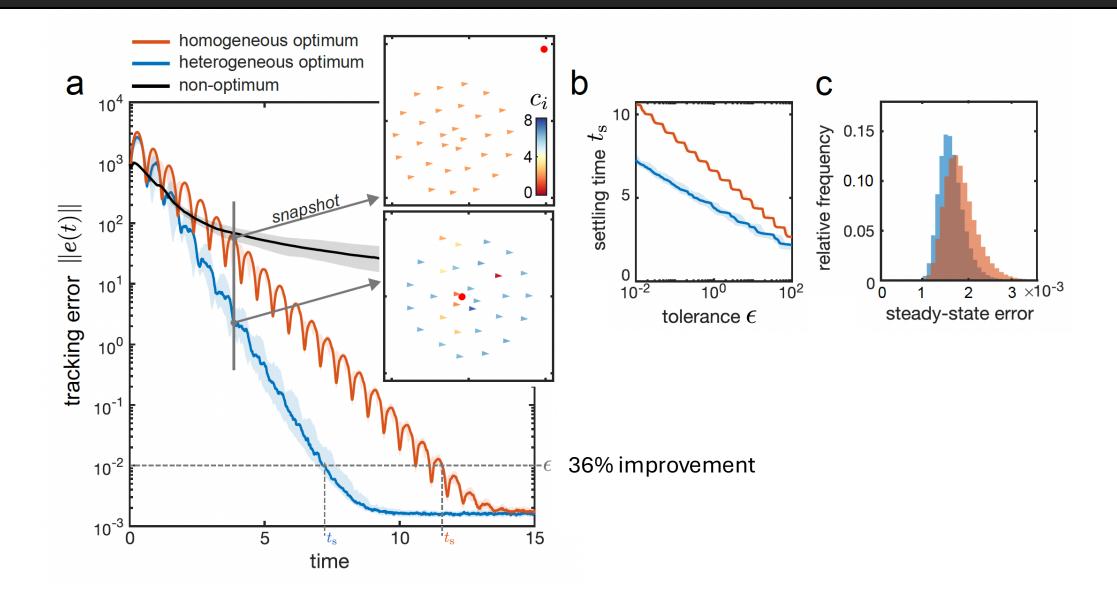
Optimal control procedure

$$\min_{\boldsymbol{b}, \boldsymbol{c}} \quad \Lambda_{\max}(J(t_k)), \\ \text{s.t.} \quad 0 < \boldsymbol{b} \leq b_{\max}, \\ \quad 0 < \boldsymbol{c} \leq c_{\max},$$

- 1. optimal flocks of *homogeneous* agents, where parameters are optimized subject to the constraint that all agents have identical gains, i.e., $\boldsymbol{b}^{(k)} = [b^{(k)}, \ldots, b^{(k)}]$ and $\boldsymbol{c}^{(k)} = [c^{(k)}, \ldots, c^{(k)}];$
- 2. optimal flocks of *heterogeneous* agents, where gains are optimized independently for each agent, i.e., $\boldsymbol{b}^{(k)} = [b_1^{(k)}, \ldots, b_N^{(k)}]$ and $\boldsymbol{c}^{(k)} = [c_1^{(k)}, \ldots, c_N^{(k)}]$.

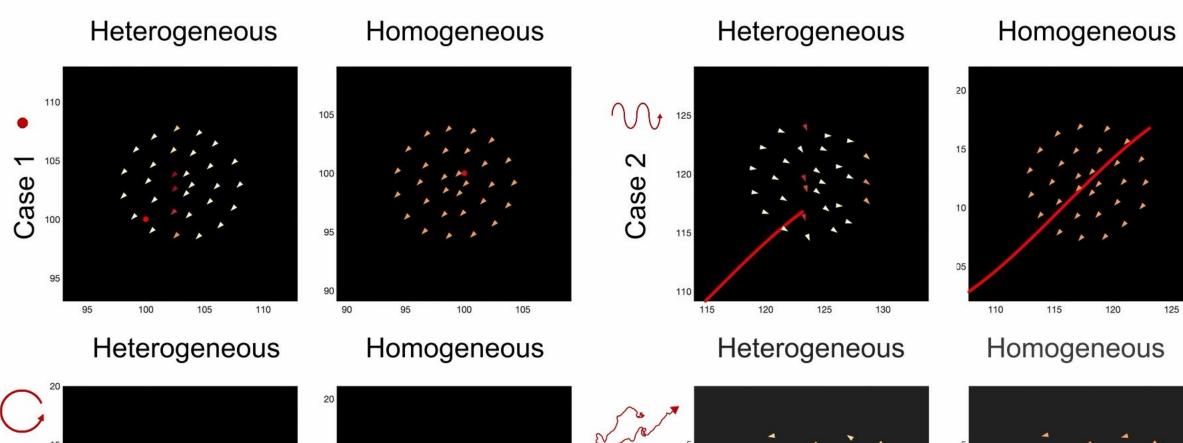
solved in "real time" at each time interval $[t_k, t_k + T]$

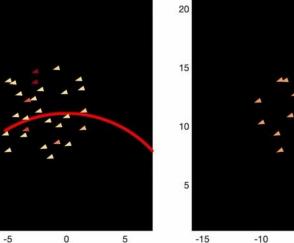
Heterogeneous vs homogeneous flocking



Supplementary Movie 1

Target Tracking and Flock Formation





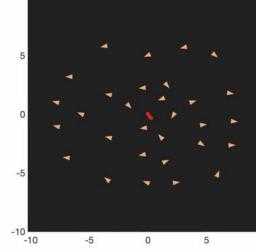
Case 3

10

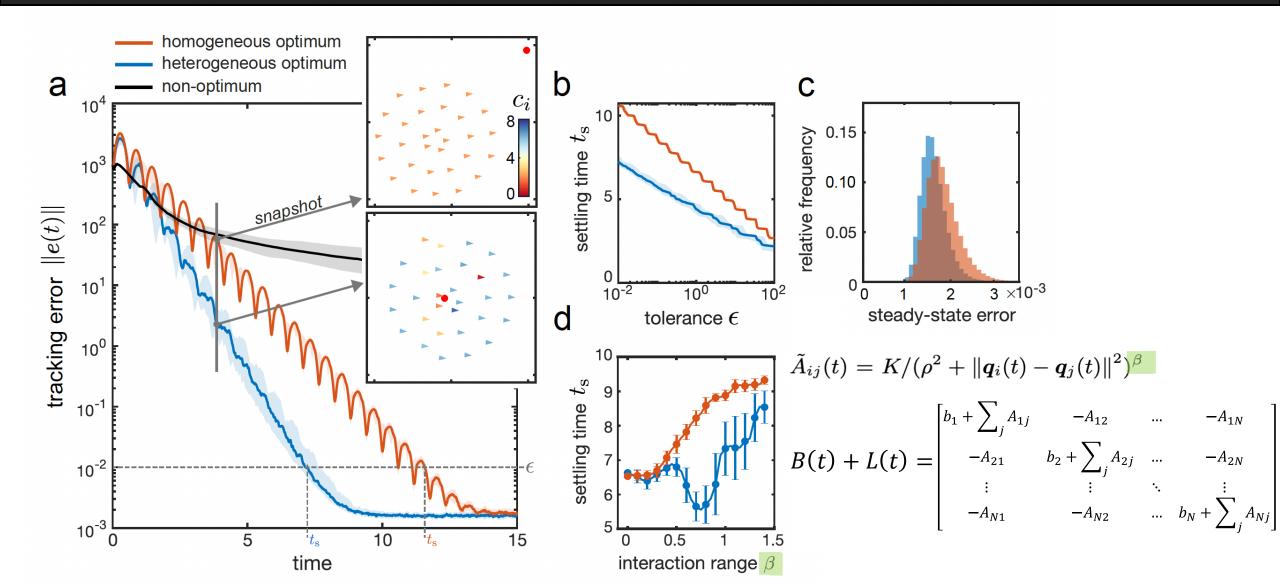
-10

5 -10 -5 0

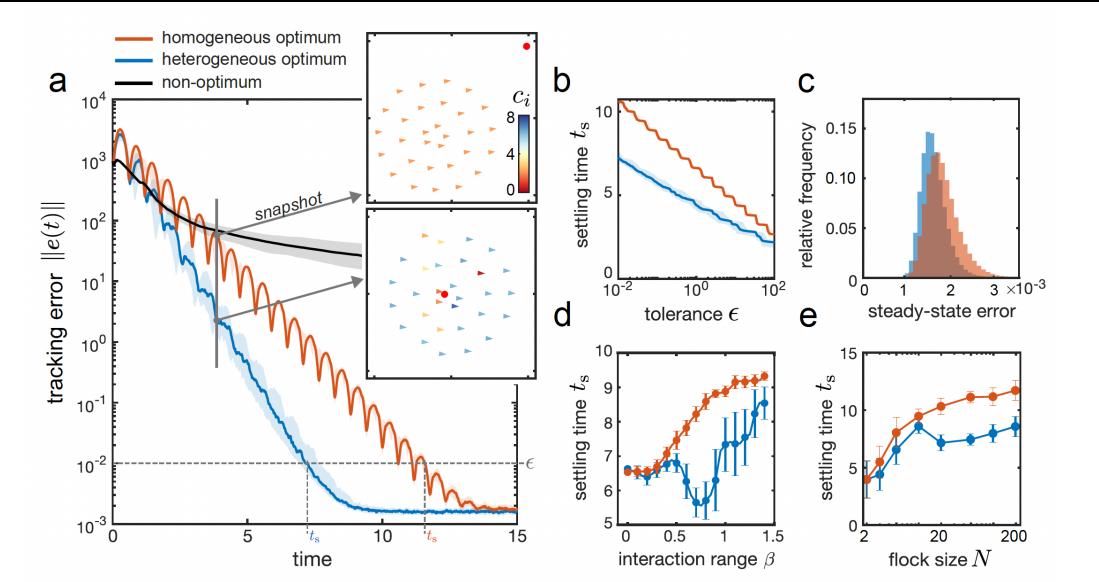
See 2 -10 -10 -10 -5 0 5



Heterogeneous vs homogeneous flocking



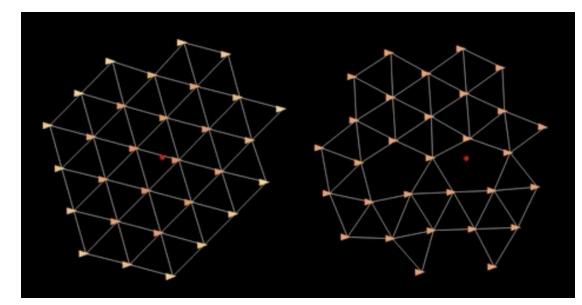
Heterogeneous vs homogeneous flocking



 $\dot{\boldsymbol{q}}_i = \boldsymbol{p}_i,$

$$\dot{oldsymbol{p}}_i = oldsymbol{u}_i^lpha + oldsymbol{u}_i^lpha + oldsymbol{u}_i^lpha + oldsymbol{u}_i^eta$$

R Olfati-Saber, *IEEE Trans. Automatic Control* (2006).



model complexity

previous current

 $\dot{oldsymbol{q}}_i = oldsymbol{p}_i,$

R Olfati-Saber, *IEEE Trans. Automatic Control* (2006).

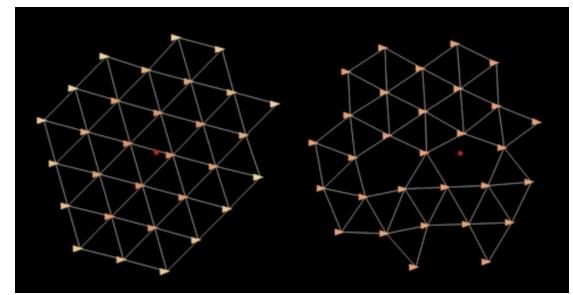
 $\dot{oldsymbol{p}}_i = oldsymbol{u}_i^lpha + oldsymbol{u}_i^lpha + oldsymbol{u}_i^eta,$

agent-agent interaction:

$$\boldsymbol{u}_{i}^{\alpha} = -k_{1}^{\alpha} \nabla_{\boldsymbol{q}_{i}} V(\boldsymbol{q}) + k_{2}^{\alpha} \sum_{j \in \mathcal{N}_{i}(\boldsymbol{q})} A_{ij}(\boldsymbol{q})(\boldsymbol{p}_{j} - \boldsymbol{p}_{i})$$

$$V(\boldsymbol{q}^{*}) = 0$$

$$\inf \|\boldsymbol{q}_{i}^{*} - \boldsymbol{q}_{j}^{*}\| = d$$



model complexity	
previous	current
pre-assigned formation	emergent formation

 $\dot{\boldsymbol{q}}_i = \boldsymbol{p}_i,$

R Olfati-Saber, *IEEE Trans. Automatic Control* (2006).

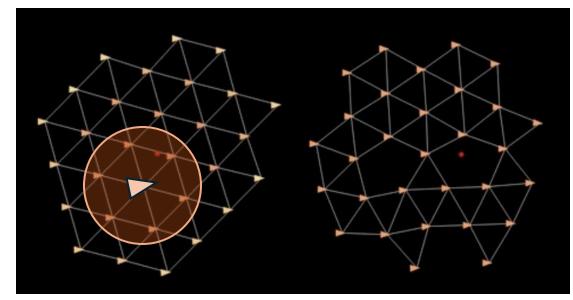
 $\dot{oldsymbol{p}}_i = oldsymbol{u}_i^lpha + oldsymbol{u}_i^lpha + oldsymbol{u}_i^eta,$

agent-agent interaction:

$$\boldsymbol{u}_{i}^{\alpha} = -k_{1}^{\alpha} \nabla_{\boldsymbol{q}_{i}} V(\boldsymbol{q}) + k_{2}^{\alpha} \sum_{j \in \mathcal{N}_{i}(\boldsymbol{q})} A_{ij}(\boldsymbol{q}) (\boldsymbol{p}_{j} - \boldsymbol{p}_{i})$$

$$V(\boldsymbol{q}^{*}) = 0$$

$$\inf \|\boldsymbol{q}_{i}^{*} - \boldsymbol{q}_{j}^{*}\| = d$$



model complexity

previous current

pre-assigned formation all-to-all, weighted network piecewise constant adj. matrix linear time-varying dynamics

emergent formation sparse, weighted network continuous adjacency matrix nonlinear dynamics

R Olfati-Saber, *IEEE Trans. Automatic Control* (2006).

 $\dot{oldsymbol{q}}_i = oldsymbol{p}_i,$

 $\dot{oldsymbol{p}}_i = oldsymbol{u}_i^lpha + oldsymbol{u}_i^lpha + oldsymbol{u}_i^lpha + oldsymbol{u}_i^eta,$

agent-agent interaction: $\mathbf{u}_i^\alpha = -k_1^\alpha \boldsymbol{\nabla}_{\boldsymbol{q}_i} V(\boldsymbol{q}) + k_2^\alpha \sum_{j \in \mathcal{N}_i(\boldsymbol{q})} A_{ij}(\boldsymbol{q}) (\boldsymbol{p}_j - \boldsymbol{p}_i)$

time

model complexity

previous current

pre-assigned formation all-to-all, weighted network piecewise constant adj. matrix time-varying dynamics

emergent formation sparse, weighted network continuous adjacency matrix nonlinear dynamics

agent-target interaction:

$$oldsymbol{u}_i^\gamma = -b_i(oldsymbol{q}_i - oldsymbol{q}_{ ext{t}}) - c_i(oldsymbol{p}_i - oldsymbol{p}_{ ext{t}})$$

R Olfati-Saber, *IEEE Trans. Automatic Control* (2006).

 $\dot{oldsymbol{q}}_i = oldsymbol{p}_i,$

 $\dot{oldsymbol{p}}_i = oldsymbol{u}_i^lpha + oldsymbol{u}_i^lpha + oldsymbol{u}_i^lpha + oldsymbol{u}_i^eta,$

agent-agent interaction: $\boldsymbol{u}_{i}^{lpha}=-k_{1}^{lpha}\boldsymbol{
abla}_{\boldsymbol{q}_{i}}V(\boldsymbol{q})+k_{2}^{lpha}\sum_{j\in\mathcal{N}_{i}(\boldsymbol{q})}A_{ij}(\boldsymbol{q})(\boldsymbol{p}_{j}-\boldsymbol{p}_{i})$

time

model complexity

previous c

pre-assigned formation all-to-all, weighted network piecewise constant adj. matrix time-varying dynamics current emergent formation sparse, weighted network continuous adjacency matrix nonlinear dynamics 3 Reynold's rules

agent-target interaction:

$$\boldsymbol{u}_i^{\gamma} = -b_i(\boldsymbol{q}_i - \boldsymbol{q}_{\mathrm{t}}) - c_i(\boldsymbol{p}_i - \boldsymbol{p}_{\mathrm{t}})$$

agent-obstacle interaction: $oldsymbol{u}_i^eta = 0$ (... for now)

Optimal free flocking

Nonlinear system stability analysis

Lyapunov function: $H(e) = V(e_q) + \frac{1}{2}\bar{e}^{\mathsf{T}}\bar{e}$

1)
$$\alpha_1 \|\bar{e}\|^2 \leq H(e) \leq \alpha_2 \|\bar{e}\|^2$$

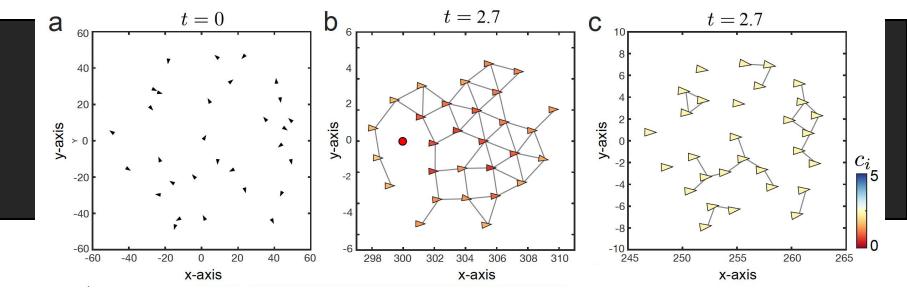
2) $\dot{H}(e,t) = \bar{e}^{\mathsf{T}} J(t) \bar{e} \leq \Lambda_{\max} (J(t_k)) \|\bar{e}\|^2$, $J(t_k) = \begin{bmatrix} 0_{Nm} & I_{Nm} \\ -I_m \otimes B & -I_m \otimes \begin{bmatrix} C \\ C \\ -I_m \otimes B \end{bmatrix}$

$$\|\boldsymbol{e}(t) - \boldsymbol{e}^*\| \leq \eta \exp\left\{\frac{\eta_k}{2\alpha_2}\Lambda_{\max}(J(t_k))T\right\} \|\boldsymbol{e}(t_k) - \boldsymbol{e}^*\|$$

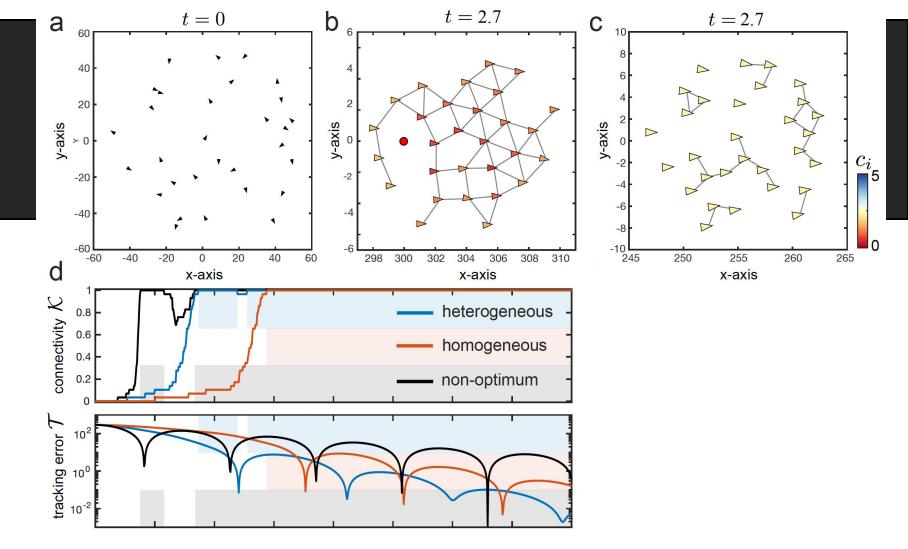
Supplementary Movie 2

Optimal Free Flocking

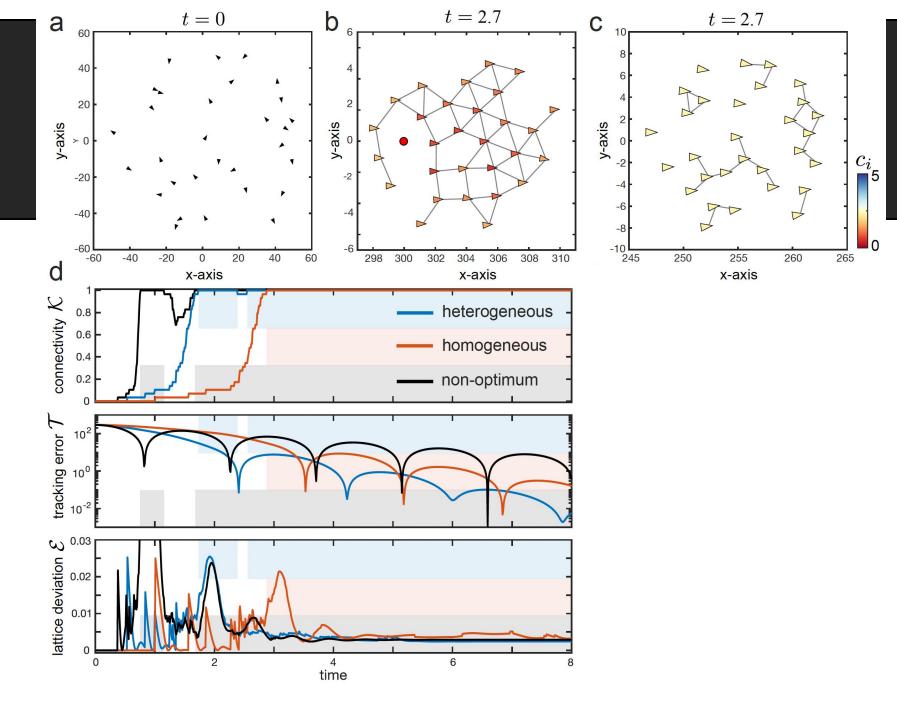
Optimal free flocking

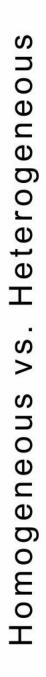


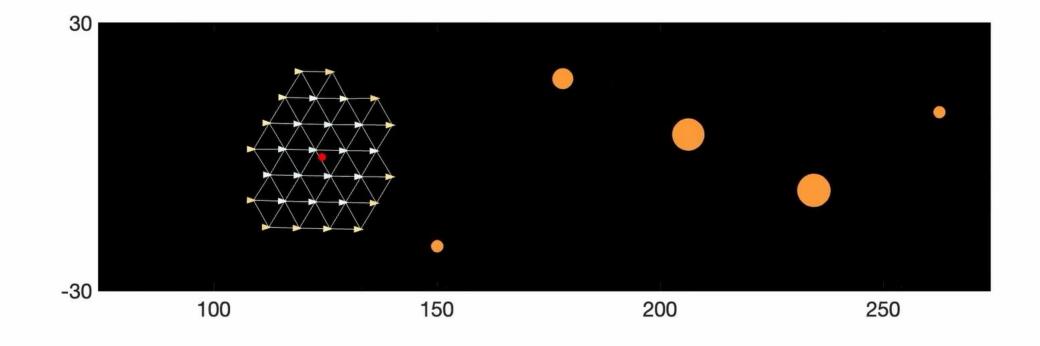
Optimal free flocking

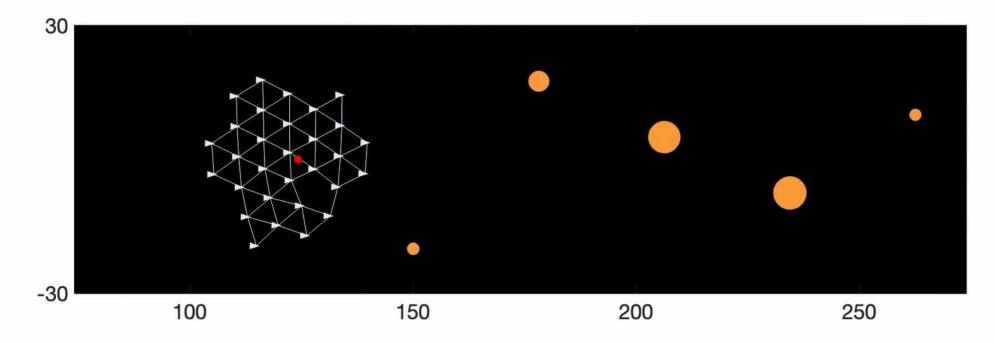


Optimal free flocking

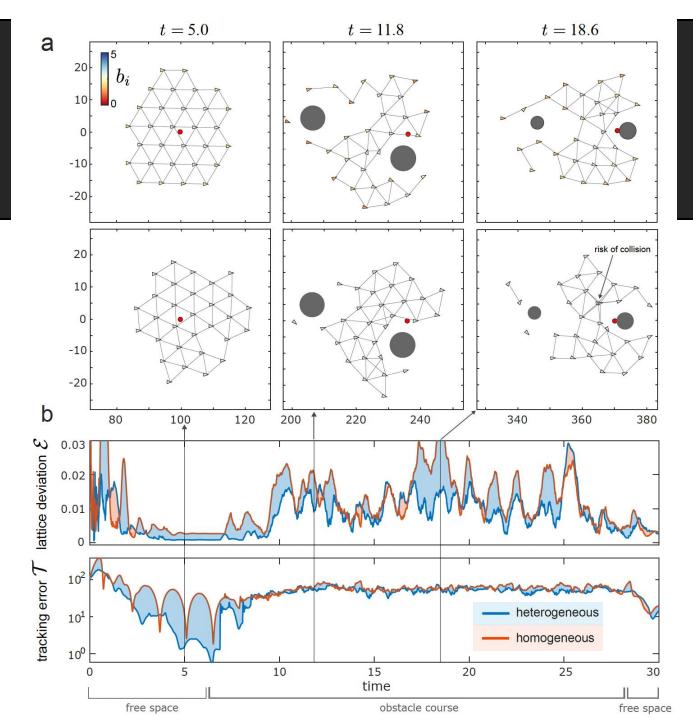








Optimal obstacle maneuvering



Take-home question

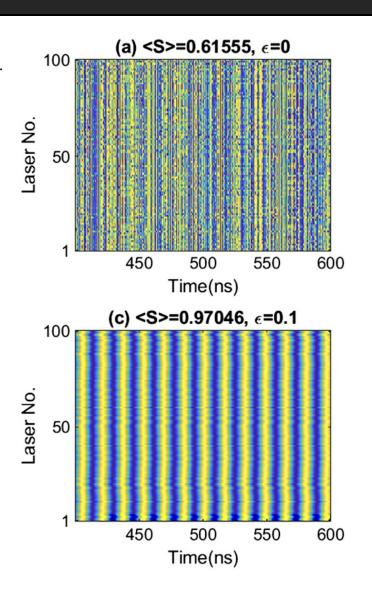
Why does heterogeneity improve collective behavior?

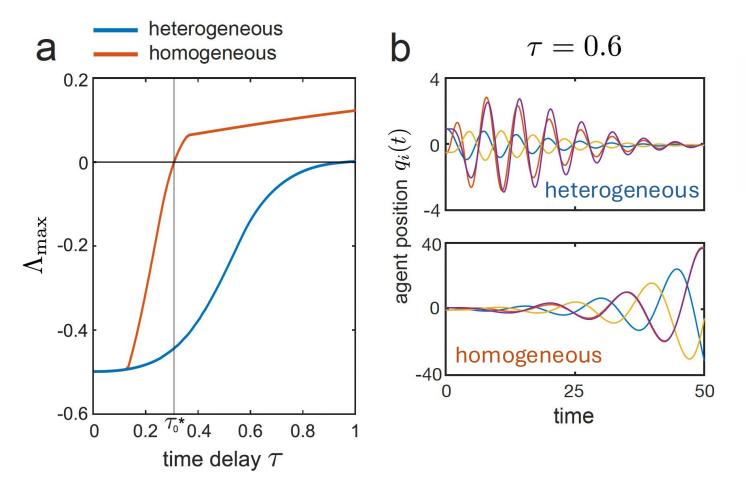


PHYSICAL REVIEW LETTERS 127, 173901 (2021)

Using Disorder to Overcome Disorder: A Mechanism for Frequency and Phase Synchronization of Diode Laser Arrays

N. Nair,^{1,*} K. Hu,^{1,†} M. Berrill,^{2,‡} K. Wiesenfeld[®],^{3,§} and Y. Braiman^{®1,4,∥} ¹The College of Optics and Photonics (CREOL), University of Central Florida, Orlando, Florida 32816, USA ²Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ³School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA ⁴Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, USA

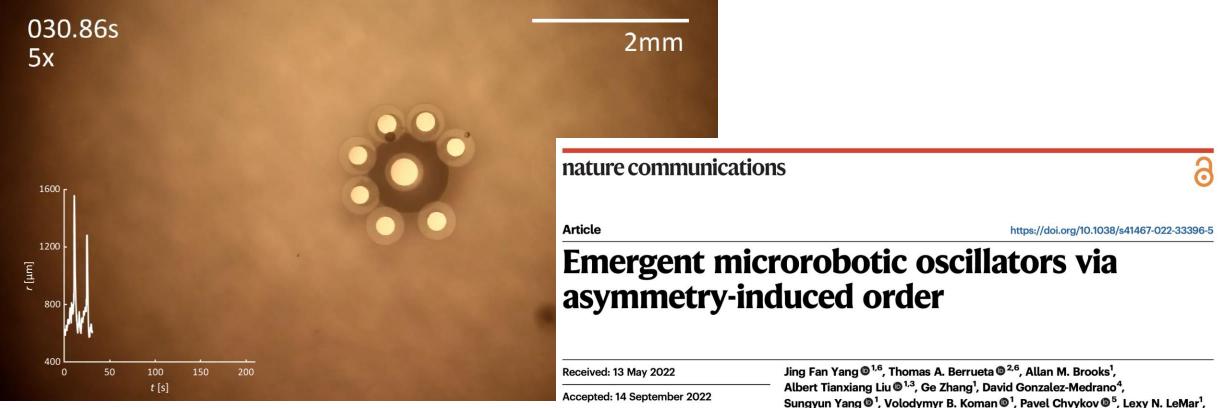




time-delay multi-agent model

$$\dot{\boldsymbol{q}}_{i}(t) = \boldsymbol{p}_{i}(t),$$

$$\dot{\boldsymbol{p}}_{i}(t) = -k_{i} \left(\sum_{j=1}^{N} L_{ij} \boldsymbol{q}_{j}(t-\tau) + \sum_{j=1}^{N} L_{ij} \boldsymbol{p}_{i}(t-\tau) \right)$$



Published online: 13 October 2022

Marc Z. Miskin ⁰⁴, Todd D. Murphey ⁰² & Michael S. Strano ⁰¹

ENTER FOR ROBOTICS AND BIOSYSTEMS AT MCCORMICK SCHOOL OF ENGINEERING

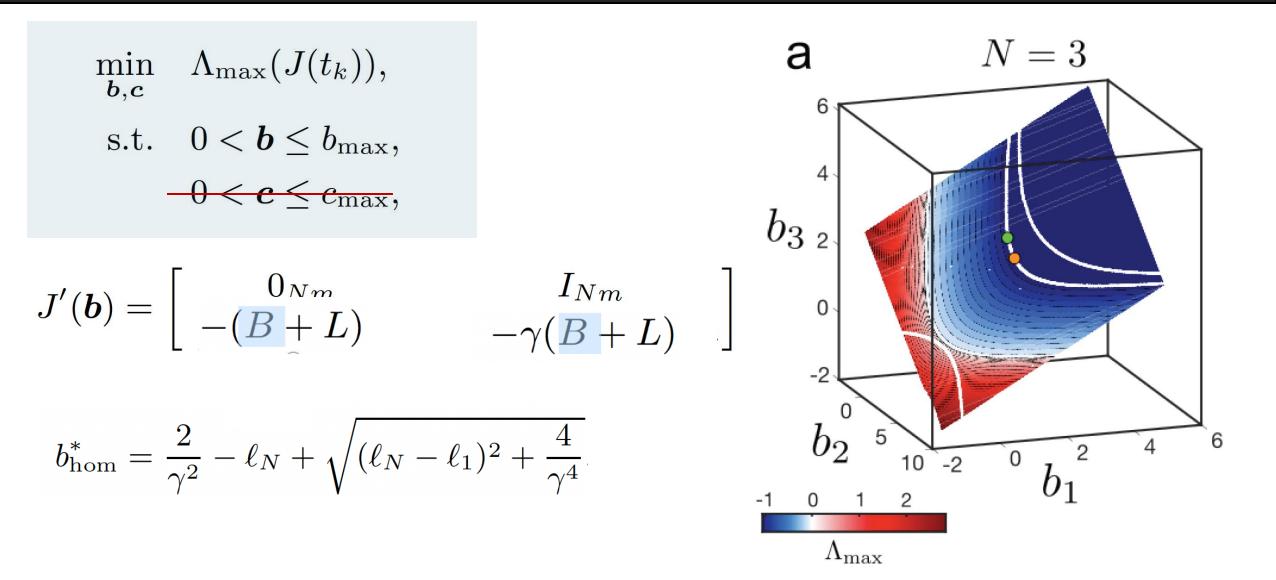
$$\min_{\boldsymbol{b},\boldsymbol{c}} \quad \Lambda_{\max}(J(t_k)),$$

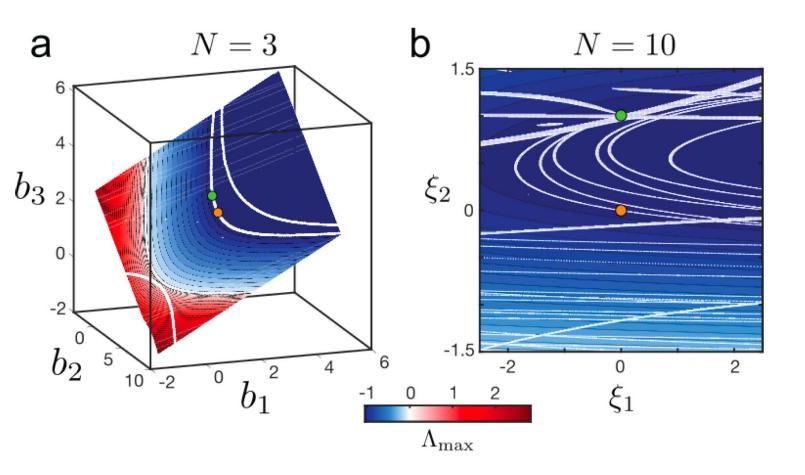
s.t.
$$0 < \boldsymbol{b} \leq b_{\max}$$
,

$$-0 < c \leq c_{\max},$$

$$J'(\boldsymbol{b}) = \begin{bmatrix} 0_N & I_N \\ -(\boldsymbol{B}+L) & -\gamma(\boldsymbol{B}+L) \end{bmatrix}$$

$$\begin{split} \min_{\boldsymbol{b},\boldsymbol{c}} & \Lambda_{\max}(J(t_k)), \\ \text{s.t.} & 0 < \boldsymbol{b} \leq b_{\max}, \\ & -\boldsymbol{0} < \boldsymbol{c} \leq c_{\max}, \end{split} \\ J'(\boldsymbol{b}) = \begin{bmatrix} 0_N & I_N \\ -(B+L) & -\gamma(B+L) \end{bmatrix} & J \end{split} \quad \textbf{b}_{\text{hom}} = \frac{2}{\gamma^2} - \ell_N + \sqrt{(\ell_N - \ell_1)^2 + \frac{4}{\gamma^4}} & \textbf{b}_{\text{homogeneous gain}} \\ \end{split}$$





Questions

Which conditions lead to a heterogeneous optimum? How to efficiently locate them (algorithmically)?

What are the implications for other network dynamics?

Optimal flock formation induced by heterogeneity

Arthur N. Montanari^{a,b,1,2}, Ana Elisa D. Barioni^{a,b,1}, Chao Duan^c, and Adilson E. Motter^{a,b,d,e}

^aDepartment of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA ^bCenter for Network Dynamics, Northwestern University, Evanston, IL 60208, USA ^cSchool of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China ^dDepartment of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, 60208, USA ^eNorthwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA

Ana Barioni

Chao Duan

Adilson Motter

Camila Felix

Code available at https://github.com/montanariarthur/OptFlock

Final remarks

The physics and diversity behind flocking: a nature-inspired study

Network Science Society

Thank you!

... Questions?

