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Nonlinear network

nodal dynamics
(self-dynamics)

coupling term
(adjacency matrix 𝐾)

Nodes are 𝑚-dimensional: 𝒙𝑖 =

𝑥𝑖,1
𝑥𝑖,2
⋮

𝑥𝑖,𝑚

∈ 𝒮𝑚 ⊆ ℝ𝑚

System is 𝑛-dimensional:     𝒙 =

𝑥1
𝑥2
⋮
𝑥𝑁

∈ 𝒮𝑛 ⊆ ℝ𝑛
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nodal dynamics
(self-dynamics)

coupling term
(adjacency matrix 𝐾)

power-grid model

neuronal model (FitzHugh-Nagumo)

van der Pol oscillators

Nonlinear network
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Lyapunov function

If   𝑉 𝒙 > 0, ∀𝒙 ∈ 𝒟\{0},     then 𝒙∗ is Lyapunov stable.
𝑉 0 = 0
ሶ𝑉 𝑥 ≤ 0, ∀𝒙 ∈ 𝒟\{0}

Region of attraction:

(positively invariant set)

Aleksandr Lyapunov
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How to construct them?

Aleksandr Lyapunov
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How to construct them?

Khalil. Nonlinear systems (2002).

(quadratic)

(polynomial)

(trigonometric) (switched systems)

Rossa, Tanwani, Zaccarian. Max–min Lyapunov 
functions for switched systems and related 
differential inclusions. Automatica (2020).
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How to construct them?

data
driven

model
driven

max
𝑉(𝑥)

𝜂Ω = 𝑥 ∈ 𝒟 ∶ 𝑉 𝒙 ≤ 𝜂
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SOS optimization

data
driven

model
driven

Finding a Lyapunov polynomial function is an NP-hard problem.

Finding a Lyapunov “sum-of-squares” polynomial function can 

be done efficiently with semidefinite programming (convex optimization).

Papachristodoulou & Prajna. On the construction of Lyapunov 

functions using the sum of squares decomposition. 
IEEE Conference on Decision and Control (2002).
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SOS optimization

data
driven

model
driven

degree 6 SOS Lyapunov functionsquadratic Lyapunov functions

shape function

estimated ROA

ground-truth ROA

Packard, Topcu, Seiler Jr, Balas. Help on SOS. 
IEEE Control Systems Magazine (2010).

max
𝑉(𝑥)

𝜂max
𝑉(𝑥)

𝜂

Ω = 𝑥 ∈ 𝒟 ∶ 𝑉 𝒙 ≤ 𝜂
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SOS optimization

data
driven

model
driven

degree 2 SOS Lyapunov functionsanalytical Lyapunov functions

estimated ROA

ground-truth ROA

Anghel, Milano, Papachristodoulou. Algorithmic construction of 

Lyapunov functions for power system stability analysis.
IEEE Transactions on Circuits and Systems I (2013).

max
𝑉(𝑥)

𝜂
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What 
problem??





Distributed approach
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Distributed approach

For each subset 𝒱𝑝, we are going to 

build a partial function 𝑉𝑝 ∶ 𝒮𝑝 ↦ ℝ

defined on the constrained subspace
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Distributed approach

𝒱𝑝 = 1,6 ,

𝒮𝑝 = 𝒙 ∈ 𝒮𝑛 ∶ 𝑥2 = 𝑥3 = 𝑥4 = 𝑥5 = 0

partial function 𝑉𝑝 ∶ 𝒮𝑝 ↦ ℝ
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Distributed Lyapunov function
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Main result

If   ෨𝑉c 𝑥 > 0, ∀𝑥 ∈ 𝒟\{0},     then the composite function                              is a Lyapunov function.
෨𝑉c 0 = 0
ሶ෨𝑉c 𝑥 ≤ 0, ∀𝑥 ∈ 𝒟\{0}
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Main result
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and so will be ෨𝑉c for nonnegative weights 𝑤𝑝.
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If all partial functions 𝑉𝑝 satisfy the relationship

… then all partial functions 𝑉𝑝 are 

also Lyapunov functions

Use SOS optimization to find 
each of the partial functions 

in parallel.

Condition III:

ሶ෨𝑉c ≤ 𝒘𝑇 𝐴 − 𝐵
𝑉1
⋮
𝑉𝑳

+ 𝑉c 𝒘
𝑇𝐵𝟏𝐿 < 0

If 𝒘 is a probability vector, then
… and the composite function 
෨𝑉c is a Lyapunov function. 
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Optimization procedure
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Proof of concept

van der Pol oscillators
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Proof of concept

van der Pol oscillators

9



Large-scale networks

Linear stability Nonlinear stability
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Stability trade-offs

Linear stability Nonlinear stability

deep but small

shallow but large
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Oscillator networks

oscillator Ising machines

11



oscillator Ising machines

projected ROAs

Estimating complex ROA shapes
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Estimating complex ROA shapes

oscillator Ising machines

projected ROAs
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