

# Distributed Lyapunov functions for nonlinear network systems

**Arthur N. Montanari**



Northwestern University

December 12, 2025

# Nonlinear network

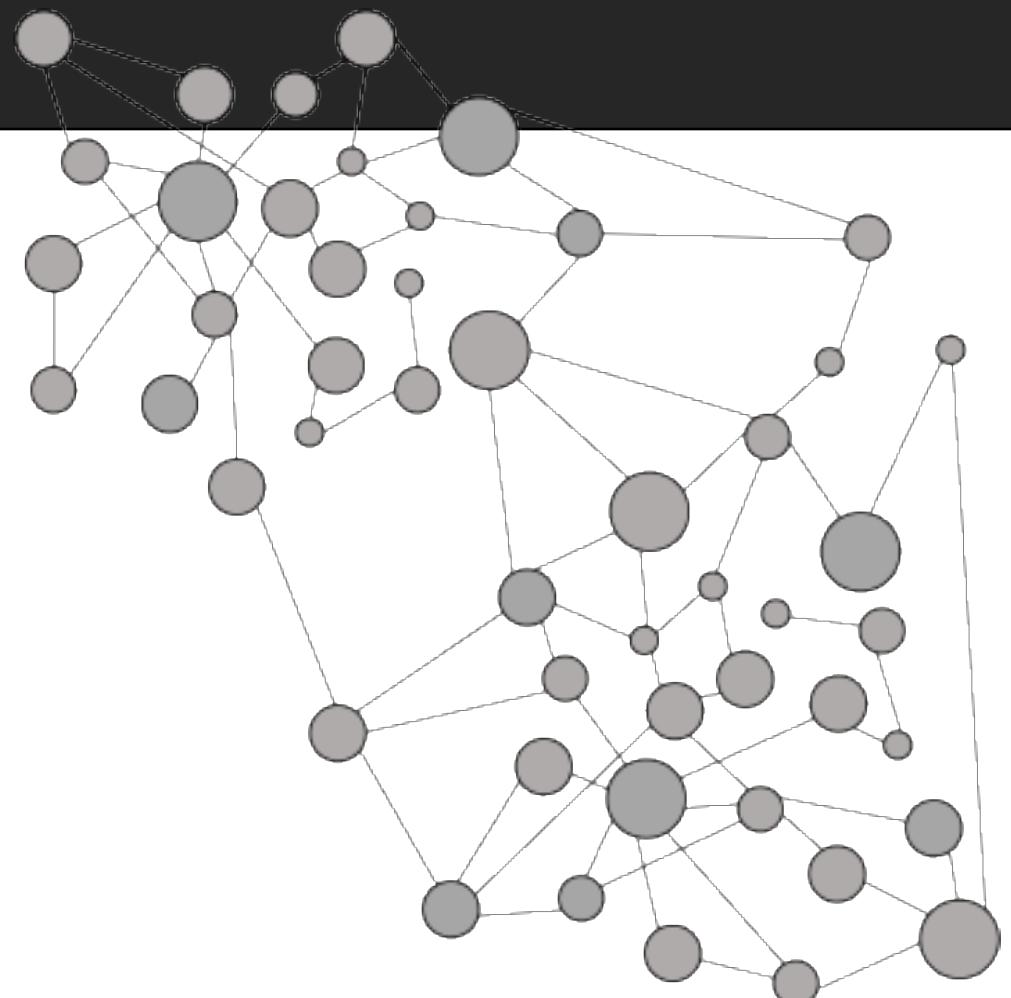
$$\dot{x}_i = f_i(x_i) + \sum_{j=1}^N K_{ij} g(x_i, x_j), \quad i = 1, \dots, N,$$

nodal dynamics      coupling term  
(self-dynamics)    (adjacency matrix  $K$ )

Nodes are  $m$ -dimensional:  $x_i = \begin{bmatrix} x_{i,1} \\ x_{i,2} \\ \vdots \\ x_{i,m} \end{bmatrix} \in \mathcal{S}^m \subseteq \mathbb{R}^m$

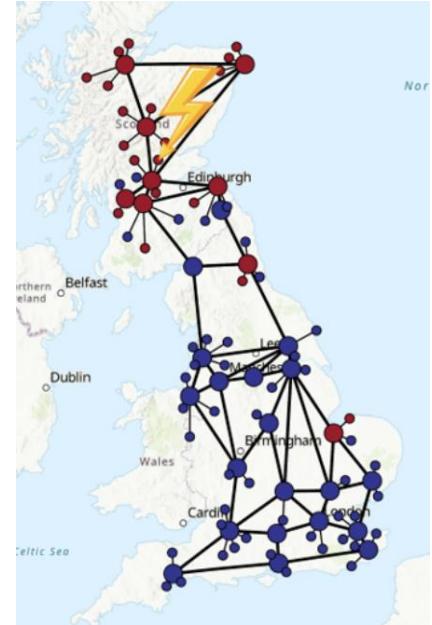
System is  $n$ -dimensional:  $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \in \mathcal{S}^n \subseteq \mathbb{R}^n$



# Nonlinear network

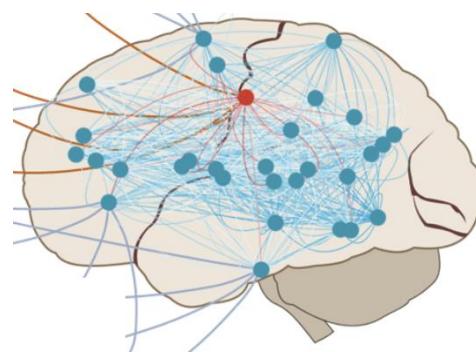
$$\dot{x}_i = f_i(x_i) + \sum_{j=1}^N K_{ij} g(x_i, x_j), \quad i = 1, \dots, N,$$

nodal dynamics      coupling term  
 (self-dynamics)    (adjacency matrix  $K$ )



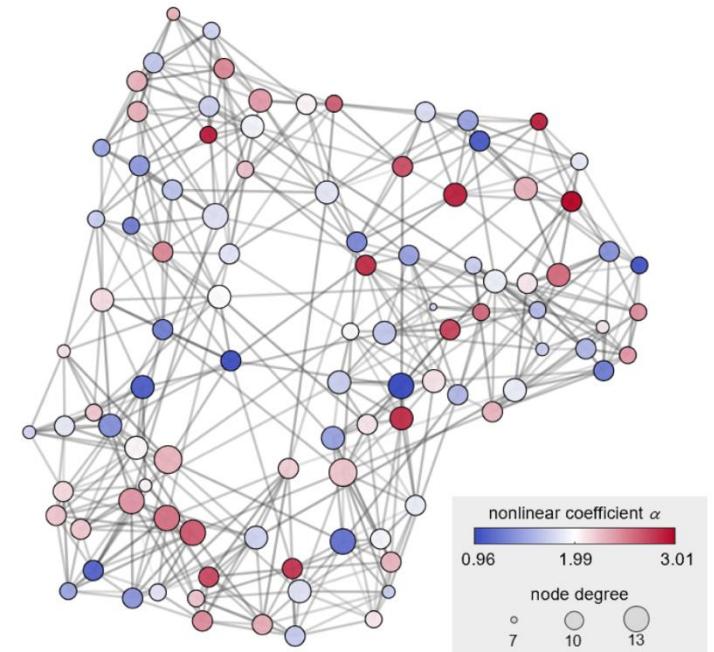
power-grid model

$$2H_i \ddot{\phi}_i + \frac{D_i}{\omega_R} \dot{\phi}_i = A_i + \sum_{j=1, j \neq i}^N K_{ij} \sin(\phi_j - \phi_i + \gamma_{ij})$$



neuronal model (FitzHugh-Nagumo)

$$\begin{aligned} \dot{v}_i &= v_i - \frac{v_i^3}{3} - w_i + \sum_j A_{ij} (v_j - v_i) \\ \tau \dot{w}_i &= v_i + a - b_i w_i \end{aligned}$$



van der Pol oscillators

$$\ddot{x}_i + b_i(1 - x_i^2)\dot{x}_i + x_i = \sum_j A_{ij}(x_j - x_i)$$

# Lyapunov function

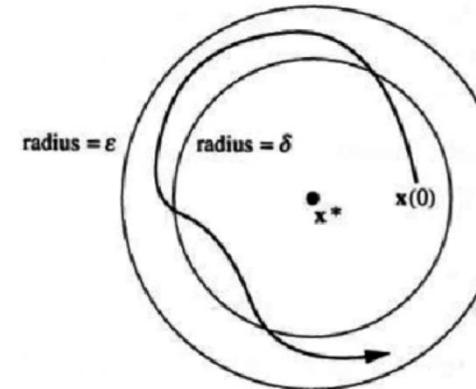
$$\dot{x}_i = f_i(x_i) + \sum_{j=1}^N K_{ij} g(x_i, x_j), \quad i = 1, \dots, N,$$

If  $V(x) > 0, \forall x \in \mathcal{D} \setminus \{0\}$ , then  $x^*$  is Lyapunov stable.

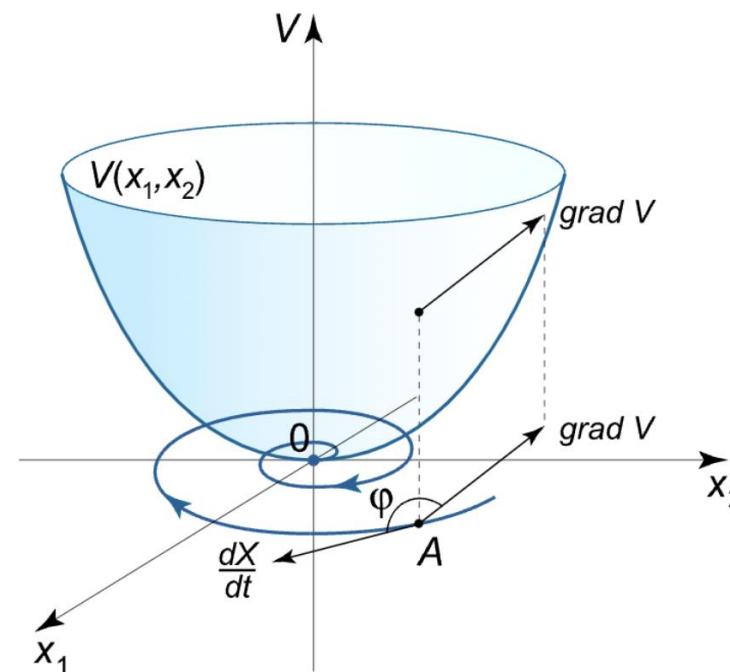
$$V(0) = 0$$

$$\dot{V}(x) \leq 0, \forall x \in \mathcal{D} \setminus \{0\}$$

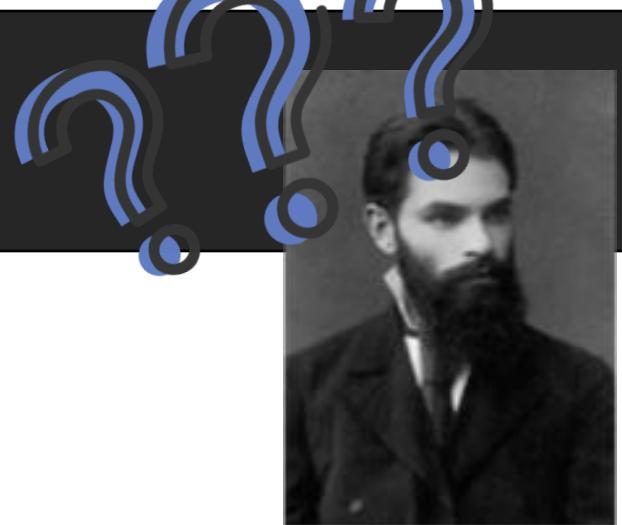
Region of attraction:  $\Omega = \{x \in \mathcal{D} : V(x) \leq \eta\}$   
(positively invariant set)



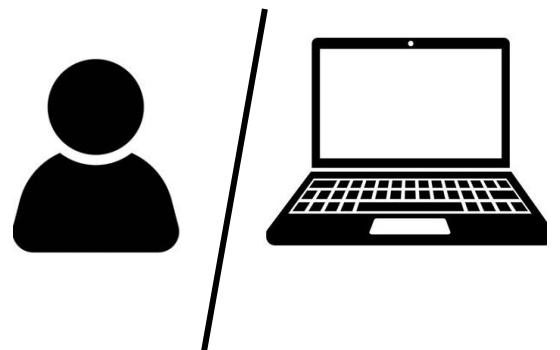
Aleksandr Lyapunov



# How to construct them?



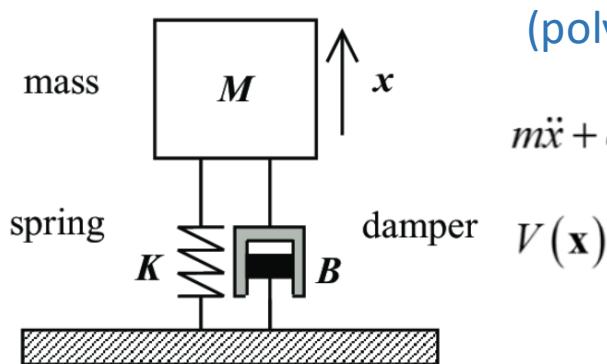
Aleksandr Lyapunov



# How to construct them?

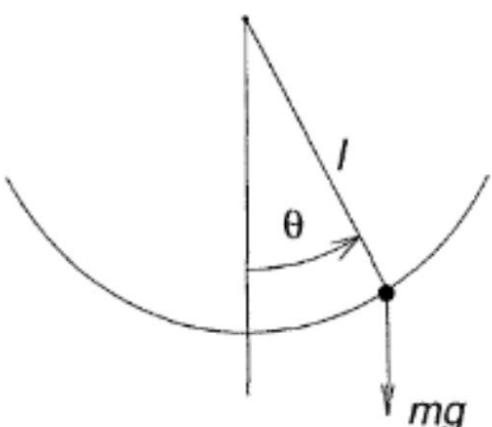
(quadratic)

$$V(x) = \frac{1}{2} \|x\|^2 \text{ or, more generally, } V(x) = x^T Px$$



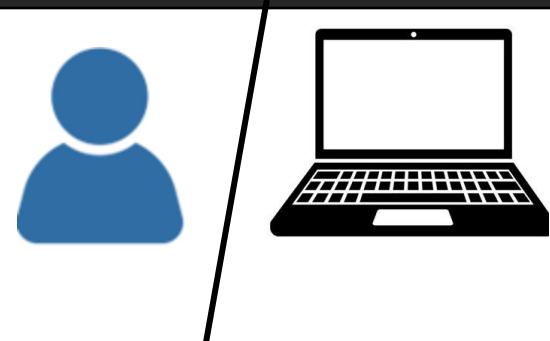
(polynomial)

$$m\ddot{x} + c|\dot{x}|\dot{x} + k_1x + k_2x^3 = 0$$
$$V(x) = \frac{1}{2}mx_2^2 + \frac{1}{2}k_1x_1^2 + \frac{1}{4}k_2x_1^4$$



$$\begin{aligned}\dot{x}_1 &= x_2 \\ \dot{x}_2 &= -a \sin x_1\end{aligned}$$
$$V(x) = a(1 - \cos x_1) + \frac{1}{2}x_2^2$$

Khalil. *Nonlinear systems* (2002).

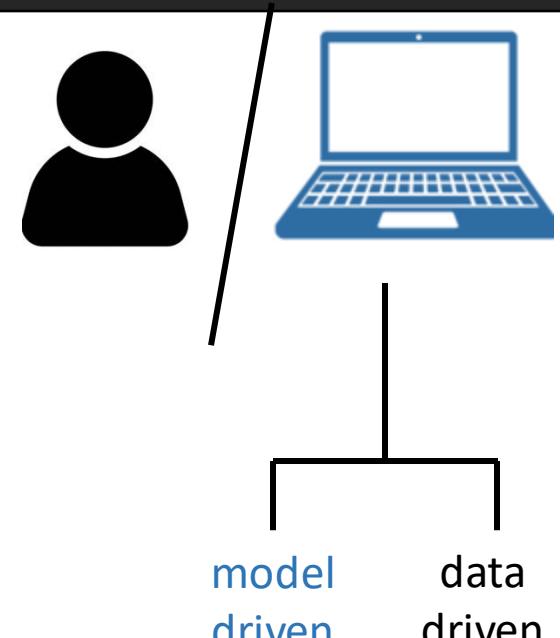


(switched systems)

$$V(x) := \max \{ \min\{x^T P_1 x, x^T P_2 x\}, x^T P_3 x \}$$

Rossa, Tanwani, Zaccarian. Max–min Lyapunov functions for switched systems and related differential inclusions. *Automatica* (2020).

# How to construct them?

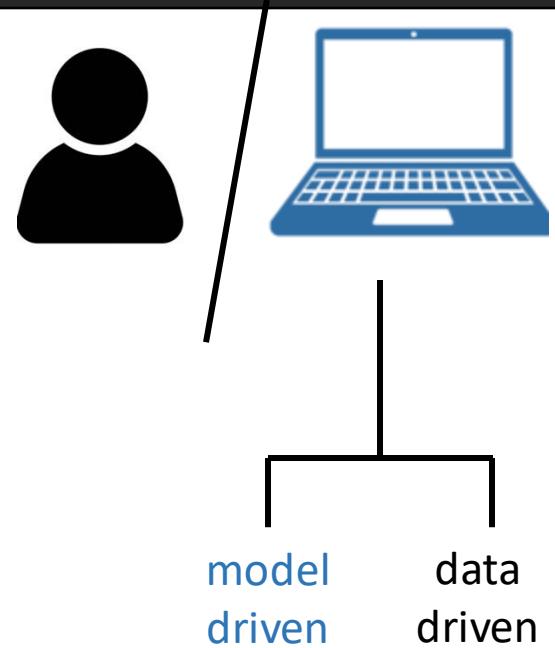


$$\Omega = \{x \in \mathcal{D} : V(x) \leq \eta\} \quad \max_{V(x)} \eta$$

# SOS optimization

Finding a Lyapunov **polynomial** function is an NP-hard problem.

Finding a Lyapunov **“sum-of-squares”** polynomial function can be done efficiently with semidefinite programming (convex optimization).



Papachristodoulou & Prajna. On the construction of Lyapunov functions using the sum of squares decomposition.  
*IEEE Conference on Decision and Control* (2002).

# SOS optimization

Finding a Lyapunov **polynomial** function is an NP-hard problem.

Finding a Lyapunov **“sum-of-squares”** polynomial function can be done efficiently with semidefinite programming (convex optimization).

**Definition.**  $p(x) := p(x_1, \dots, x_n) \in \text{SOS}$  if  $p(x) = \sum_i h_i^2(x)$ .

**Example.**  $p(x_1, x_2) = x^2 - x_1 x_2^2 + x_2^4 + 1 = 0.75(x_1 - x_2^2)^2 + 0.25(x_1 + x_2)^2 + 1^2$ .

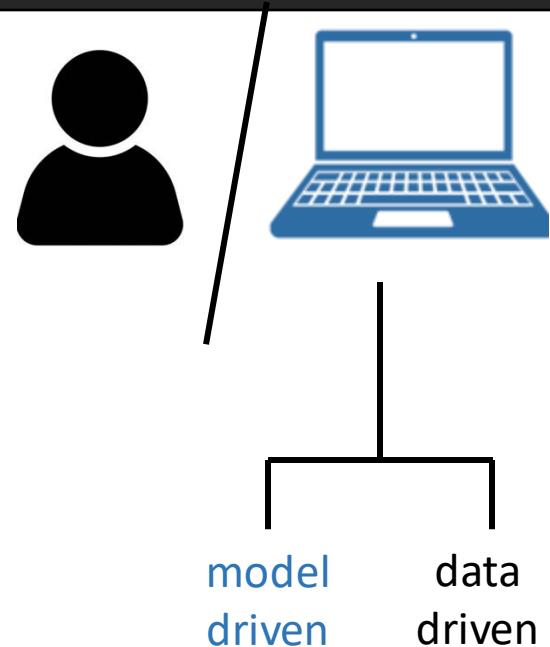
**Semidefinite programming.**  $p(x) = z(x)^T Q z(x) \in \text{SOS}$  iff  $\exists Q \geq 0 \equiv Q_0 + \sum_i \lambda_i Q_i \geq 0$

monomials  $[x_1, x_2, x_1^2, x_1 x_2, x_2^2, \dots]$

$$\min_{Q \in \mathcal{S}^n} \quad 1$$

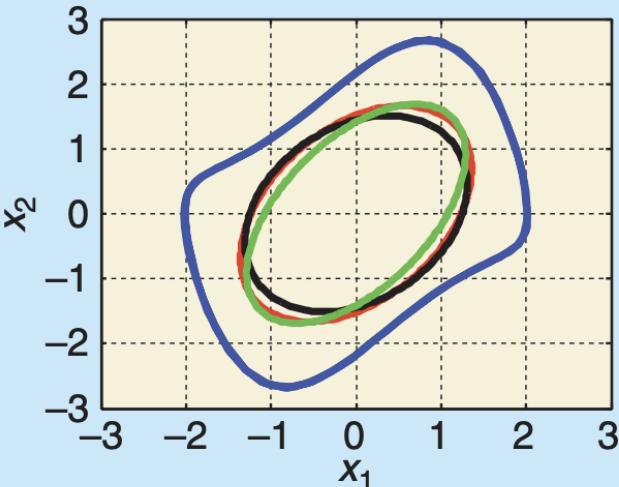
s.t.  $\text{affine function}(Q) \geq 0$

Papachristodoulou & Prajna. On the construction of Lyapunov functions using the sum of squares decomposition.  
*IEEE Conference on Decision and Control* (2002).

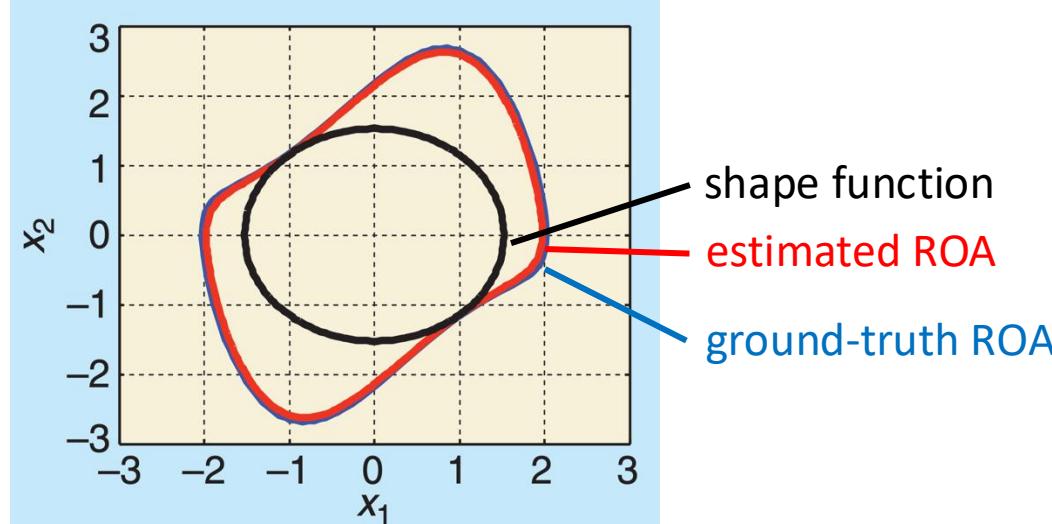
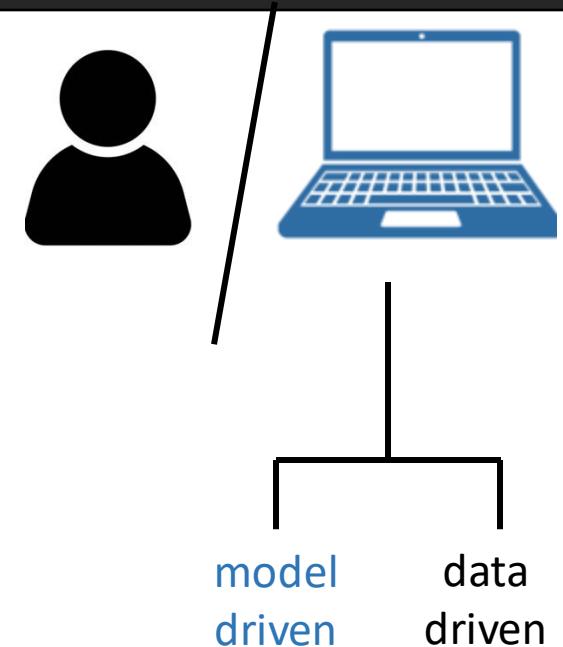


# SOS optimization

quadratic Lyapunov functions



degree 6 SOS Lyapunov functions



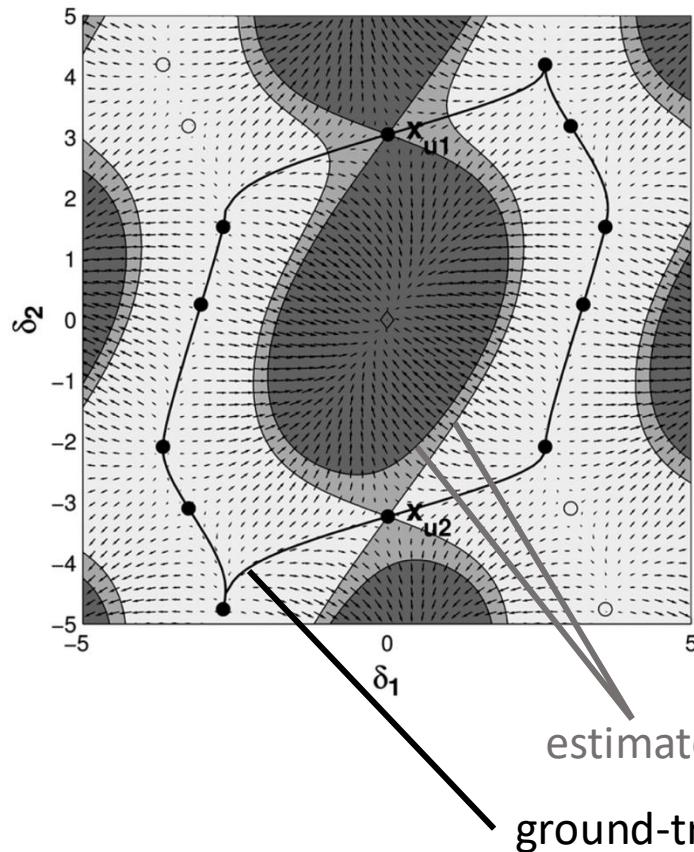
Packard, Topcu, Seiler Jr, Balas. Help on SOS.  
*IEEE Control Systems Magazine* (2010).

$$\max_{V(x)} \eta$$

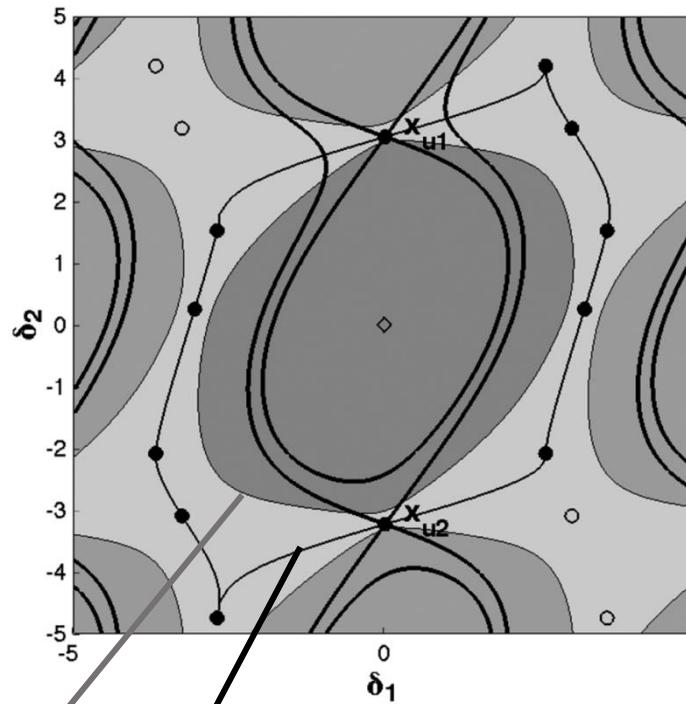
$$\Omega = \{x \in \mathcal{D} : V(x) \leq \eta\}$$

# SOS optimization

analytical Lyapunov functions

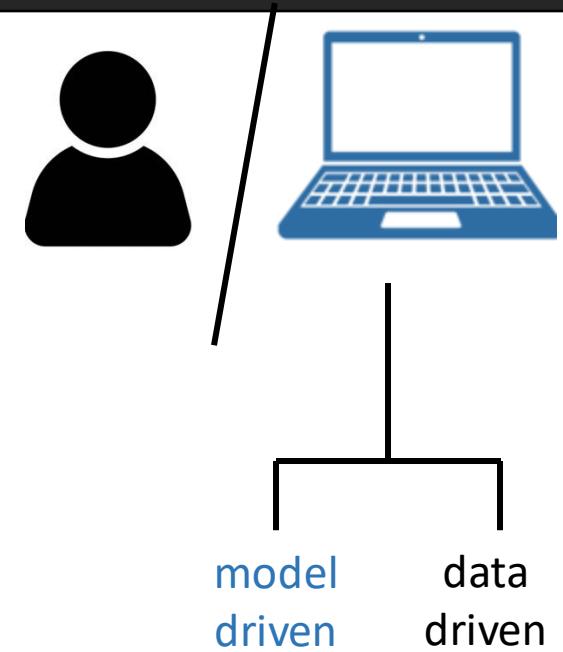


degree 2 SOS Lyapunov functions



Anghel, Milano, Papachristodoulou. Algorithmic construction of Lyapunov functions for power system stability analysis. *IEEE Transactions on Circuits and Systems I* (2013).

$$\begin{aligned} V(x) = & 0.0030 \sin(x_1) - 0.00008x_4 - 0.2683 \cos(x_1) \\ & - 0.2649 \cos(x_3) - 0.0030x_2 + 0.0044 \sin(x_3) \\ & - 0.2377 \cos(x_1) \cos(x_3) + 0.0008 \cos(x_1) \sin(x_1) \\ & + 0.0047 \cos(x_1) \sin(x_3) - 0.0037 \cos(x_3) \sin(x_1) \\ & - 0.0092 \cos(x_3) \sin(x_3) - 0.1588 \sin(x_1) \sin(x_3) \\ & - 0.0109 \cos(x_1)^2 + 0.0203 \cos(x_3)^2 - 0.0004x_2x_4 \\ & - 0.0016x_2 \cos(x_1) + 0.0047x_2 \cos(x_3) \\ & + 0.0011x_4 \cos(x_1) - 0.0010x_4 \cos(x_3) \\ & + 0.0579x_2 \sin(x_1) + 0.0219x_2 \sin(x_3) \\ & + 0.0195x_4 \sin(x_1) + 0.0972x_4 \sin(x_3) \\ & + 0.1461x_2^2 + 0.1703x_4^2 + 0.7614. \end{aligned}$$

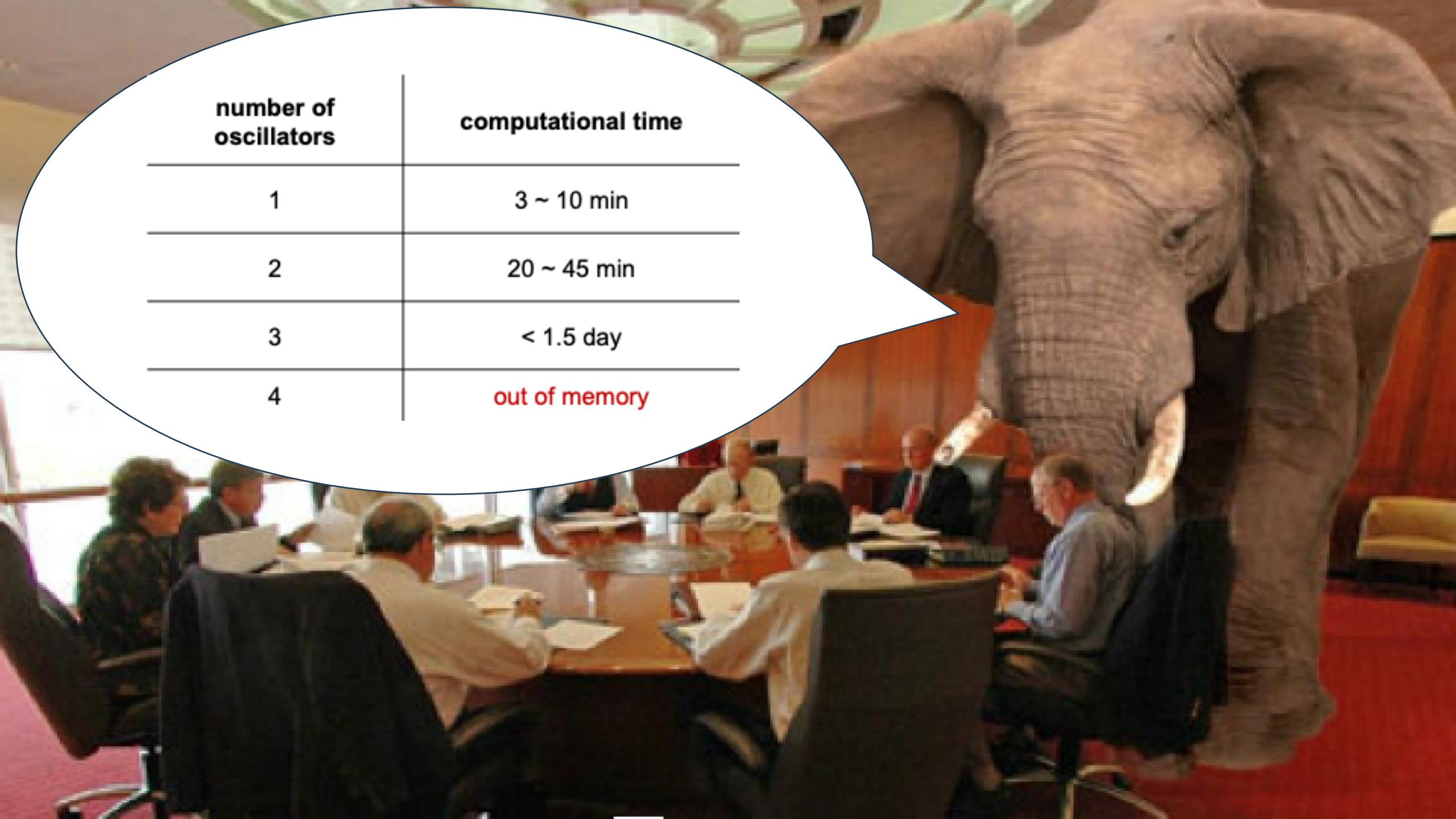


$$\max V(x) \quad \eta$$

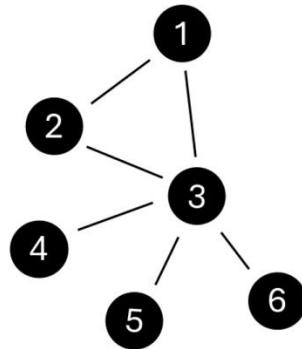
A photograph of a group of people in a conference room. There are several people seated around a large, light-colored conference table, engaged in a meeting. The room has large windows on one side, and the ceiling features a circular recessed lighting fixture. The image is partially obscured by a large black diagonal shape in the upper right corner.

What  
problem??

| number of oscillators | computational time |
|-----------------------|--------------------|
| 1                     | 3 ~ 10 min         |
| 2                     | 20 ~ 45 min        |
| 3                     | < 1.5 day          |
| 4                     | out of memory      |

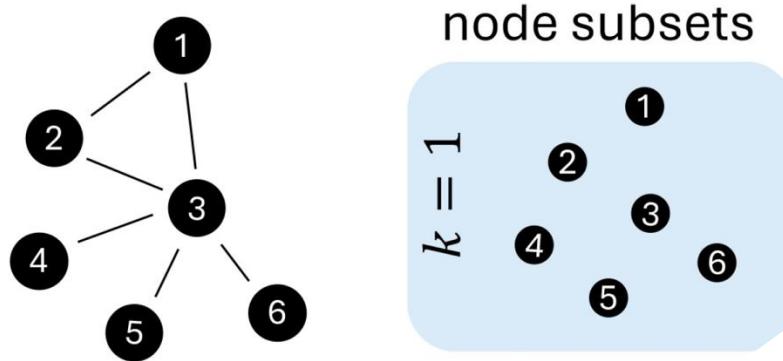


# Distributed approach



$$\dot{x}_i = f_i(x_i) + \sum_{j=1}^N K_{ij} g(x_i, x_j), \quad i = 1, \dots, N,$$

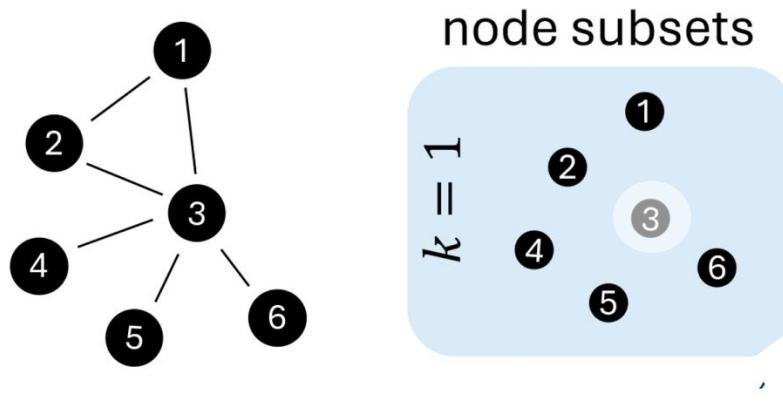
# Distributed approach



For each subset  $\mathcal{V}_p$ , we are going to build a partial function  $V_p : \mathcal{S}_p \mapsto \mathbb{R}$  defined on the constrained subspace

$$\mathcal{S}_p = \{x \in \mathcal{S}^n : x_j = 0, \forall j \notin \mathcal{V}_p\}$$

# Distributed approach



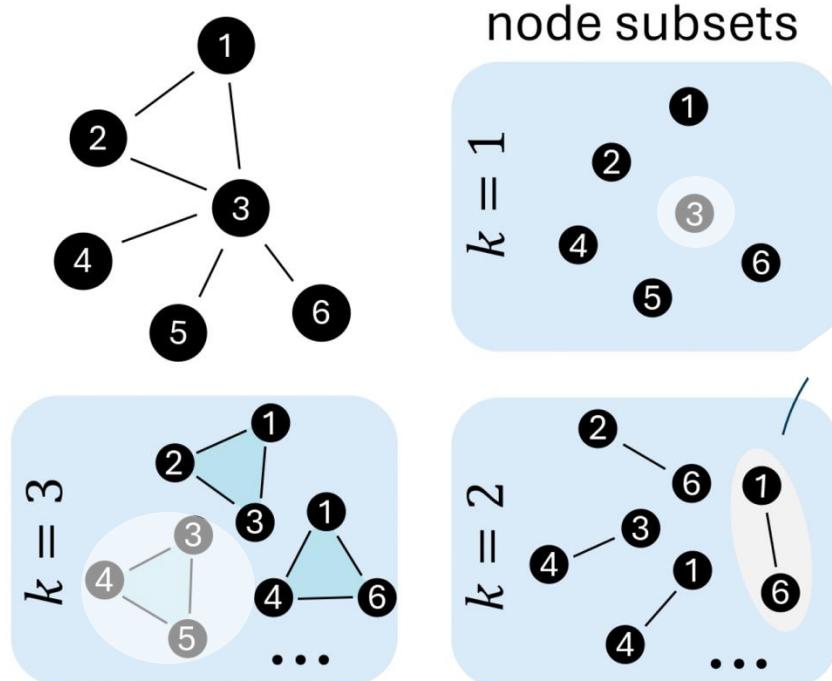
For each subset  $\mathcal{V}_p$ , we are going to build a partial function  $V_p : \mathcal{S}_p \mapsto \mathbb{R}$  defined on the constrained subspace

$$\mathcal{S}_p = \{x \in \mathcal{S}^n : x_j = 0, \forall j \notin \mathcal{V}_p\}$$

$$\mathcal{V}_p = \{3\},$$

$$\mathcal{S}_p = \{x \in \mathcal{S}^n : x_1 = x_2 = x_4 = x_5 = x_6 = 0\}$$

# Distributed approach



For each subset  $\mathcal{V}_p$ , we are going to build a partial function  $V_p : \mathcal{S}_p \mapsto \mathbb{R}$  defined on the constrained subspace

$$\mathcal{S}_p = \{x \in \mathcal{S}^n : x_j = 0, \forall j \notin \mathcal{V}_p\}$$

$$\mathcal{V}_p = \{3\},$$

$$\mathcal{S}_p = \{x \in \mathcal{S}^n : x_1 = x_2 = x_4 = x_5 = x_6 = 0\}$$

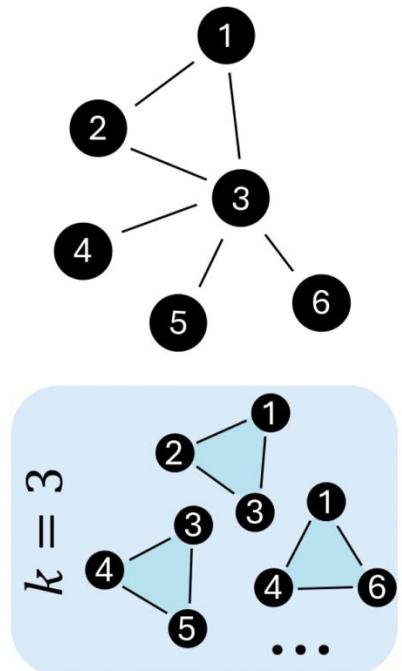
$$\mathcal{V}_p = \{1,6\},$$

$$\mathcal{S}_p = \{x \in \mathcal{S}^n : x_2 = x_3 = x_4 = x_5 = 0\}$$

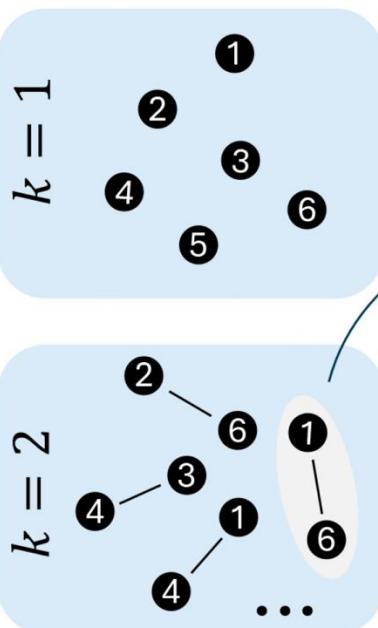
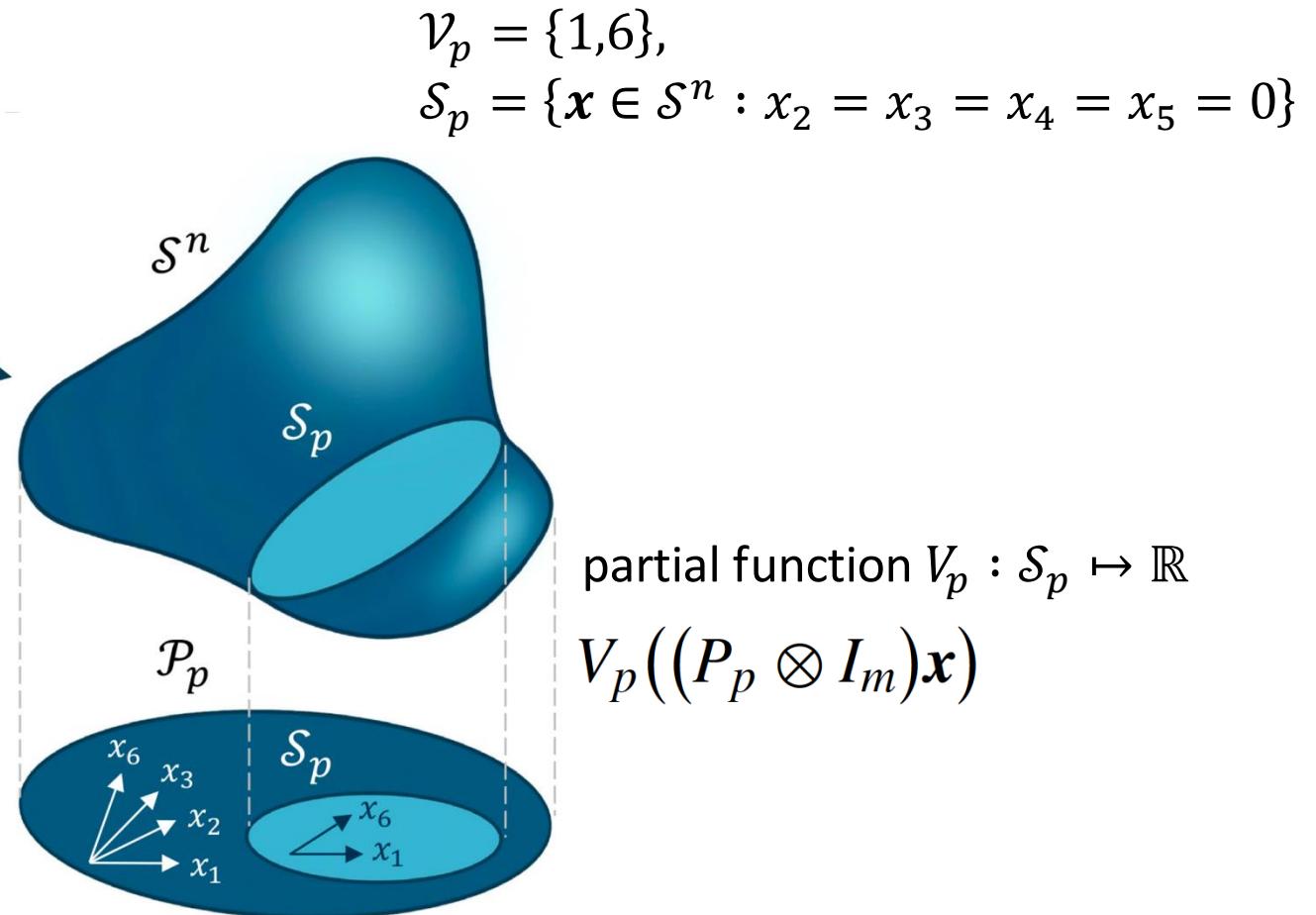
$$\mathcal{V}_p = \{3,4,5\},$$

$$\mathcal{S}_p = \{x \in \mathcal{S}^n : x_1 = x_2 = x_6 = 0\}$$

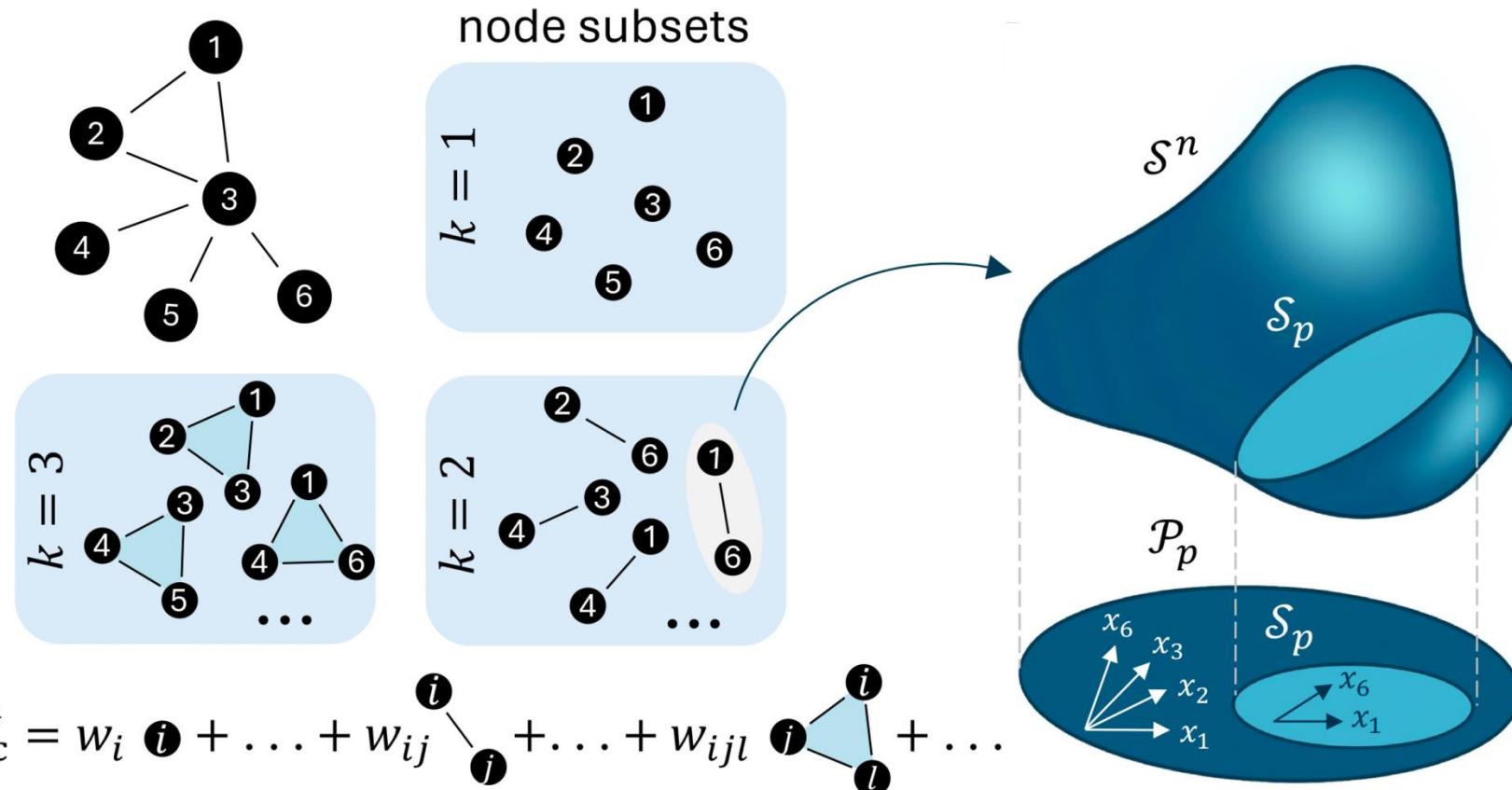
# Distributed approach



node subsets



# Distributed Lyapunov function



$$= \sum_{p=1}^L w_p V_p$$

# Main result

If  $\tilde{V}_c(x) > 0, \forall x \in \mathcal{D} \setminus \{0\}$ , then the composite function  $\tilde{V}_c = \sum_{p=1}^L w_p V_p$  is a Lyapunov function.  
 $\tilde{V}_c(0) = 0$   
 $\dot{\tilde{V}}_c(x) \leq 0, \forall x \in \mathcal{D} \setminus \{0\}$

# Main result

If  $\tilde{V}_c(x) > 0, \forall x \in \mathcal{D} \setminus \{0\}$ , then the composite function  $\tilde{V}_c = \sum_{p=1}^L w_p V_p$  is a Lyapunov function.  
 $\tilde{V}_c(0) = 0$   
 $\dot{\tilde{V}}_c(x) \leq 0, \forall x \in \mathcal{D} \setminus \{0\}$

**Conditions I and II:** If  $V_p$  is an SOS polynomial, then it is positive definite  
and so will be  $\tilde{V}_c$  for nonnegative weights  $w_p$ .

# Main result

If  $\tilde{V}_c(x) > 0, \forall x \in \mathcal{D} \setminus \{0\}$ , then the composite function  $\tilde{V}_c = \sum_{p=1}^L w_p V_p$  is a Lyapunov function.  
 $\tilde{V}_c(0) = 0$   
 $\dot{\tilde{V}}_c(x) \leq 0, \forall x \in \mathcal{D} \setminus \{0\}$

**Conditions I and II:** If  $V_p$  is an SOS polynomial, then it is positive definite and so will be  $\tilde{V}_c$  for nonnegative weights  $w_p$ .

**Main result:** If all partial functions  $V_p$  satisfy the relationship

$$\begin{bmatrix} \dot{V}_1 \\ \vdots \\ \dot{V}_L \end{bmatrix} \leq (A - B) \begin{bmatrix} V_1 \\ \vdots \\ V_L \end{bmatrix} + B\tilde{V}_c \leq 0 \quad \dots \text{then all partial functions } V_p \text{ are also Lyapunov functions}$$

- (i)  $A_{pr} - B_{pr} > 0$  for all  $r = 1, \dots, N$  and  $r \neq p$ ,
- (ii)  $\sum_{r=1}^L (A_{pr} - B_{pr}) \leq 0$ ,
- (iii)  $\sum_{r=1}^L B_{pr} \geq 0$ ,

# Main result

If  $\tilde{V}_c(x) > 0, \forall x \in \mathcal{D} \setminus \{0\}$ , then the composite function  $\tilde{V}_c = \sum_{p=1}^L w_p V_p$  is a Lyapunov function.  
 $\tilde{V}_c(0) = 0$   
 $\dot{\tilde{V}}_c(x) \leq 0, \forall x \in \mathcal{D} \setminus \{0\}$

**Conditions I and II:** If  $V_p$  is an SOS polynomial, then it is positive definite and so will be  $\tilde{V}_c$  for nonnegative weights  $w_p$ .

**Main result:** If all partial functions  $V_p$  satisfy the relationship

$$\begin{bmatrix} \dot{V}_1 \\ \vdots \\ \dot{V}_L \end{bmatrix} \leq (A - B) \begin{bmatrix} V_1 \\ \vdots \\ V_L \end{bmatrix} + B\tilde{V}_c \leq 0 \quad \dots \text{then all partial functions } V_p \text{ are also Lyapunov functions}$$

- (i)  $A_{pr} - B_{pr} > 0$  for all  $r = 1, \dots, N$  and  $r \neq p$ ,
- (ii)  $\sum_{r=1}^L (A_{pr} - B_{pr}) \leq 0$ ,
- (iii)  $\sum_{r=1}^L B_{pr} \geq 0$ ,

Use SOS optimization to find each of the partial functions in parallel.

# Main result

If  $\tilde{V}_c(x) > 0, \forall x \in \mathcal{D} \setminus \{0\}$ , then the composite function  $\tilde{V}_c = \sum_{p=1}^L w_p V_p$  is a Lyapunov function.

$\tilde{V}_c(0) = 0$

$\dot{\tilde{V}}_c(x) \leq 0, \forall x \in \mathcal{D} \setminus \{0\}$

**Conditions I and II:** If  $V_p$  is an SOS polynomial, then it is positive definite and so will be  $\tilde{V}_c$  for nonnegative weights  $w_p$ .

**Main result:** If all partial functions  $V_p$  satisfy the relationship

$$\begin{bmatrix} \dot{V}_1 \\ \vdots \\ \dot{V}_L \end{bmatrix} \leq (A - B) \begin{bmatrix} V_1 \\ \vdots \\ V_L \end{bmatrix} + B\tilde{V}_c \leq 0 \quad \dots \text{then all partial functions } V_p \text{ are also Lyapunov functions}$$

Use SOS optimization to find each of the partial functions in parallel.

**Condition III:** If  $\mathbf{w}$  is a probability vector, then

$$\dot{\tilde{V}}_c \leq \mathbf{w}^T (A - B) \begin{bmatrix} V_1 \\ \vdots \\ V_L \end{bmatrix} + V_c \mathbf{w}^T B \mathbf{1}_L < 0 \quad \dots \text{and the composite function } \tilde{V}_c \text{ is a Lyapunov function.}$$

# Main result

If  $\tilde{V}_c(x) > 0, \forall x \in \mathcal{D} \setminus \{0\}$ , then the composite function  $\tilde{V}_c = \sum_{p=1}^L w_p V_p$  is a Lyapunov function.

$\tilde{V}_c(0) = 0$

$\dot{\tilde{V}}_c(x) \leq 0, \forall x \in \mathcal{D} \setminus \{0\}$

**Conditions I and II:** If  $V_p$  is an SOS polynomial, then it is positive definite and so will be  $\tilde{V}_c$  for nonnegative weights  $w_p$ .

**Main result:** If all partial functions  $V_p$  satisfy the relationship

$$\begin{bmatrix} \dot{V}_1 \\ \vdots \\ \dot{V}_L \end{bmatrix} \leq (A - B) \begin{bmatrix} V_1 \\ \vdots \\ V_L \end{bmatrix} + B\tilde{V}_c \leq 0 \quad \dots \text{then all partial functions } V_p \text{ are also Lyapunov functions}$$

**Condition III:** If  $\mathbf{w}$  is a probability vector, then

$$\dot{\tilde{V}}_c \leq \mathbf{w}^T (A - B) \begin{bmatrix} V_1 \\ \vdots \\ V_L \end{bmatrix} + V_c \mathbf{w}^T B \mathbf{1}_L < 0 \quad \dots \text{and the composite function } \tilde{V}_c \text{ is a Lyapunov function.}$$

Use SOS optimization to find each of the partial functions in parallel.

Solve LMI problem to find  $(A, B, \mathbf{w})$ .

# Main result

If  $\tilde{V}_c(x) > 0, \forall x \in \mathcal{D} \setminus \{0\}$ , then the composite function  $\tilde{V}_c = \sum_{p=1}^L w_p V_p$  is a Lyapunov function.

$\tilde{V}_c(0) = 0$

$\dot{\tilde{V}}_c(x) \leq 0, \forall x \in \mathcal{D} \setminus \{0\}$

**Conditions I and II:** If  $V_p$  is an SOS polynomial, then it is positive definite and so will be  $\tilde{V}_c$  for nonnegative weights  $w_p$ .

**Main result:** If all partial functions  $V_p$  satisfy the relationship

$$\begin{bmatrix} \dot{V}_1 \\ \vdots \\ \dot{V}_L \end{bmatrix} \leq (A - B) \begin{bmatrix} V_1 \\ \vdots \\ V_L \end{bmatrix} + B\tilde{V}_c \leq 0$$

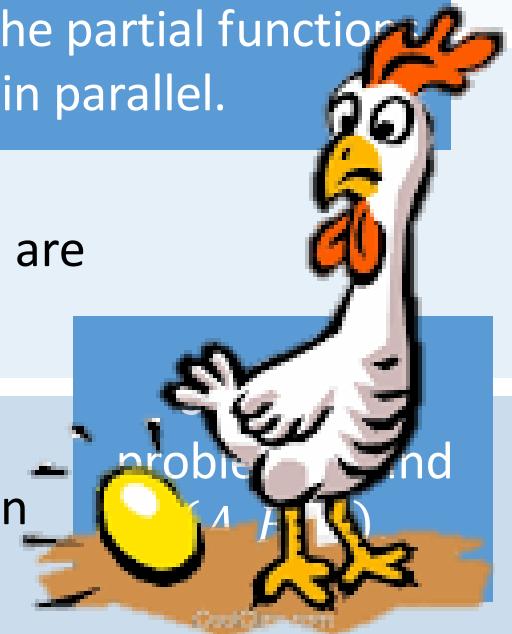
... then all partial functions  $V_p$  are also Lyapunov functions

Use SOS optimization to find each of the partial functions in parallel.

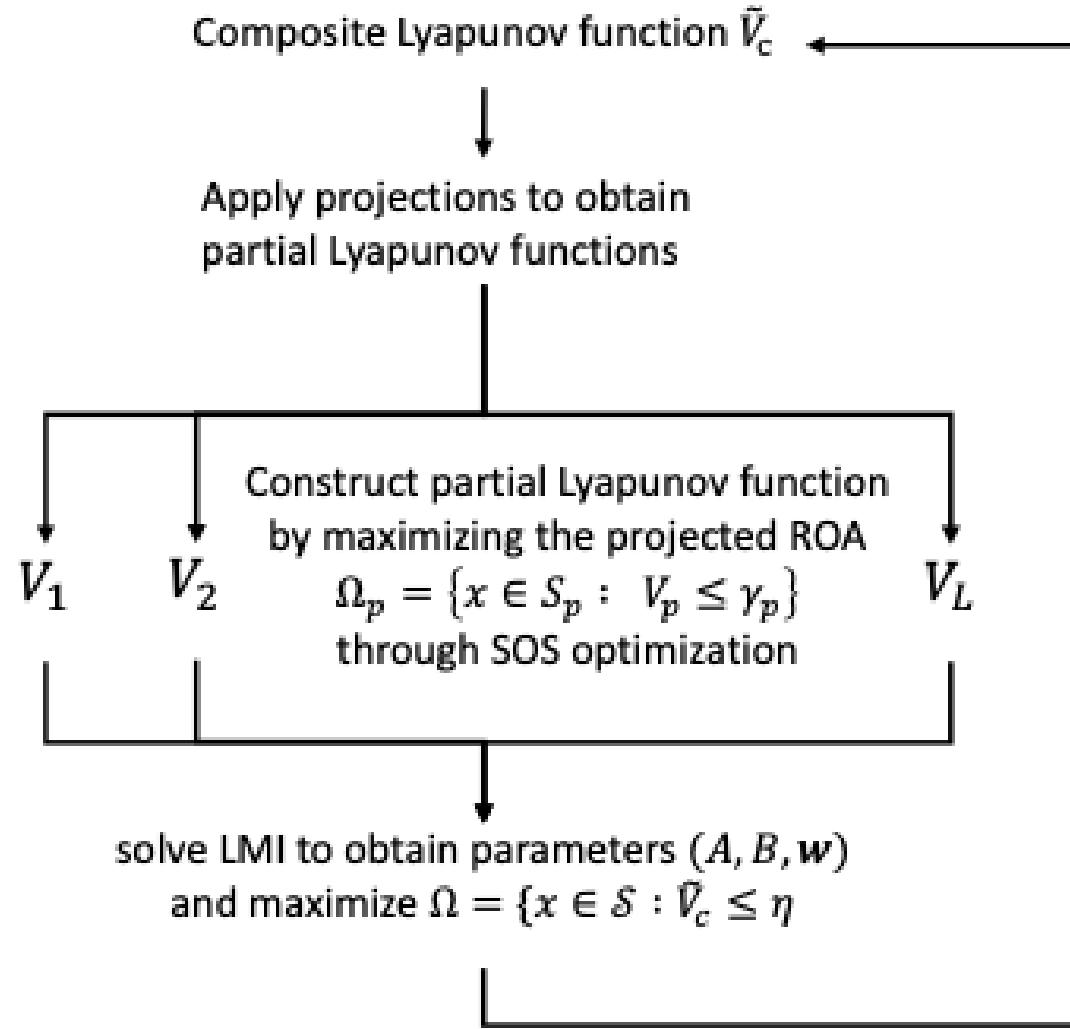
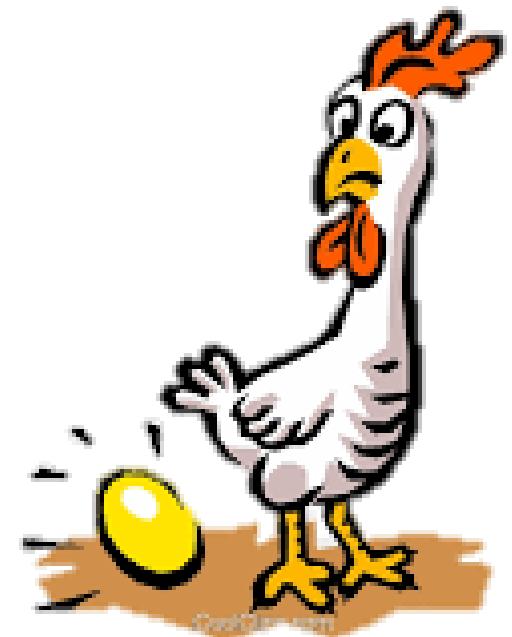
**Condition III:** If  $\mathbf{w}$  is a probability vector, then

$$\dot{\tilde{V}}_c \leq \mathbf{w}^T (A - B) \begin{bmatrix} V_1 \\ \vdots \\ V_L \end{bmatrix} + V_c \mathbf{w}^T B \mathbf{1}_L < 0$$

... and the composite function  $\tilde{V}_c$  is a Lyapunov function.



# Optimization procedure

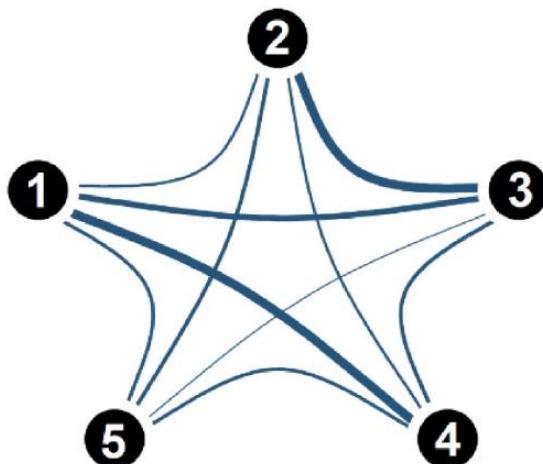
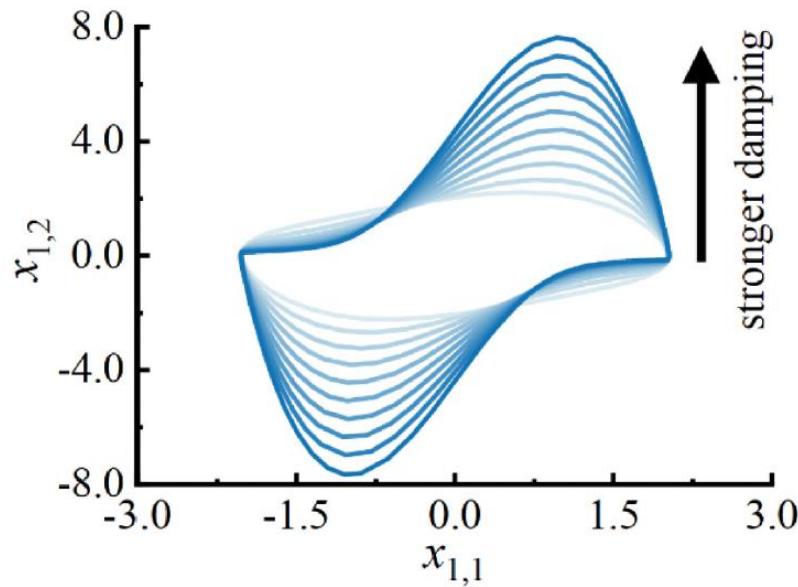


# Proof of concept

## van der Pol oscillators

$$\dot{x}_{i,1} = -x_{i,2},$$

$$\dot{x}_{i,2} = \alpha_i(x_{i,1}^2 - 1) x_{i,2} + x_{i,1} + \frac{1}{N} \sum_{j=1}^N K_{ij}(x_{j,1} - x_{i,1})$$

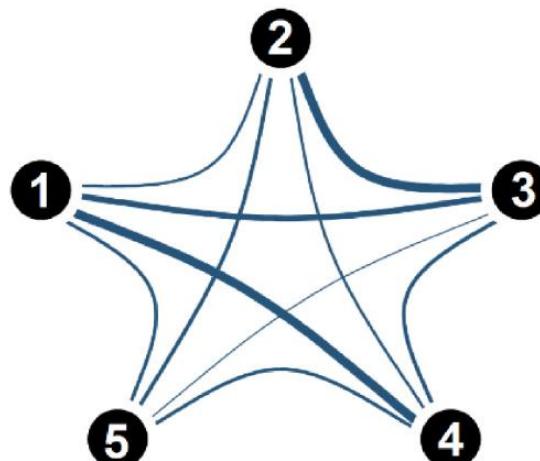
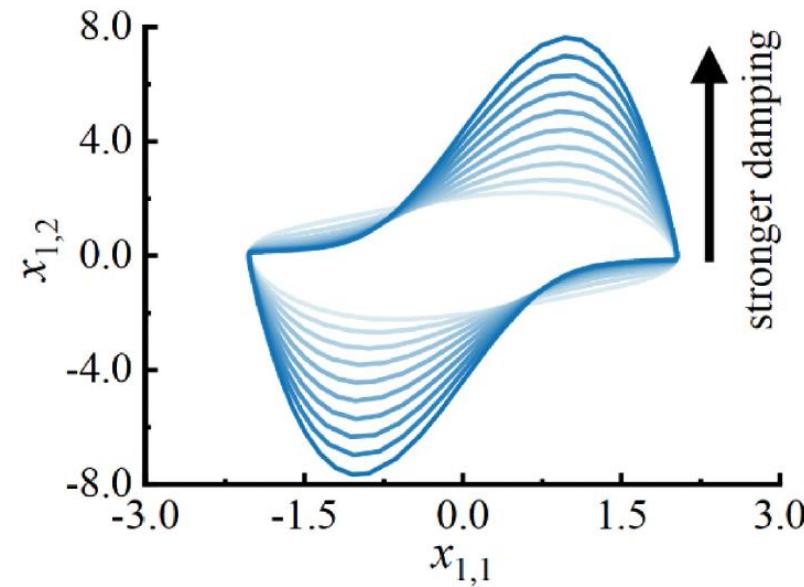


# Proof of concept

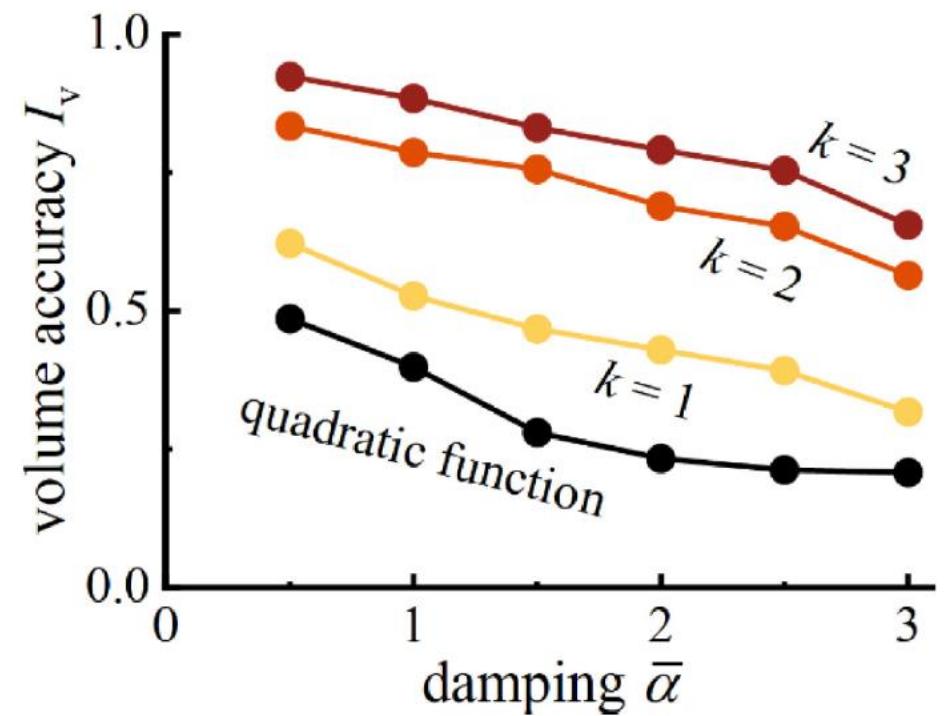
## van der Pol oscillators

$$\dot{x}_{i,1} = -x_{i,2},$$

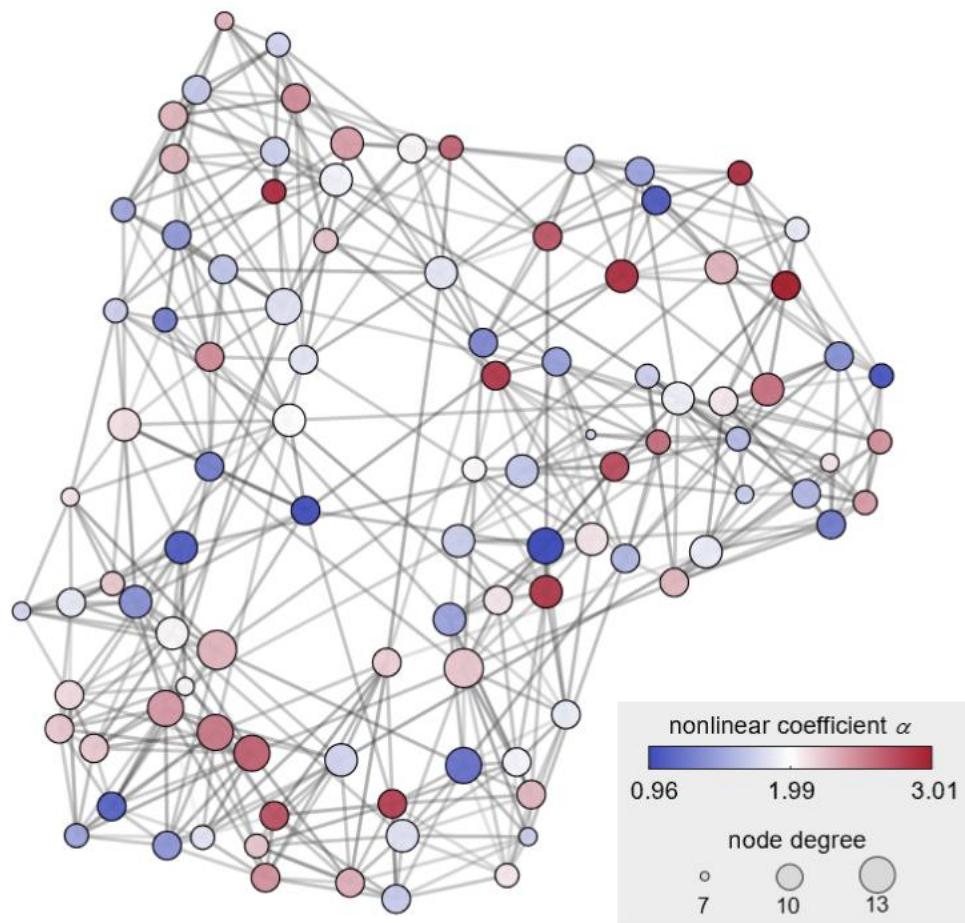
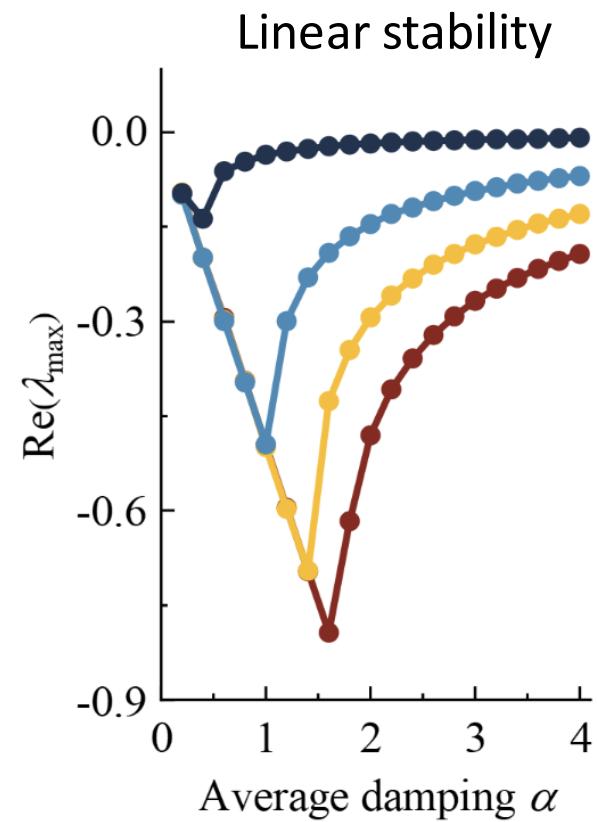
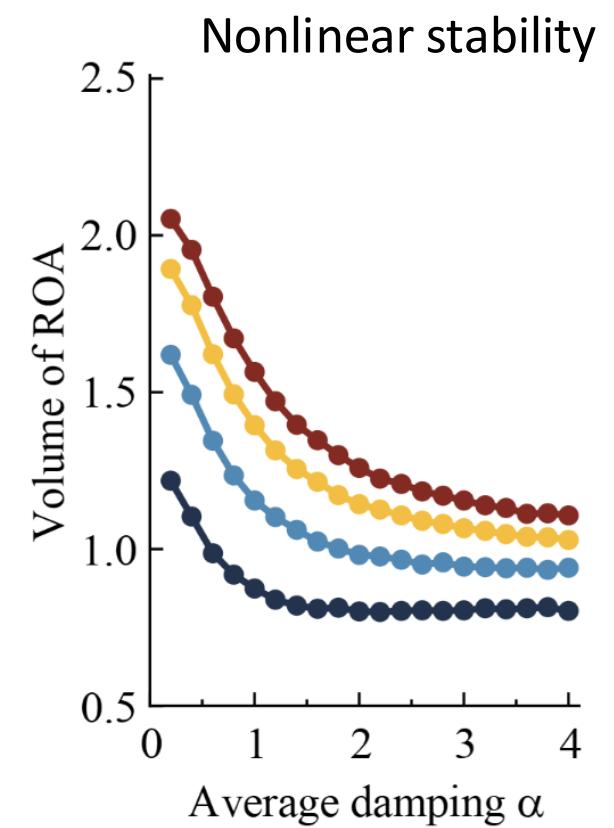
$$\dot{x}_{i,2} = \alpha_i(x_{i,1}^2 - 1) x_{i,2} + x_{i,1} + \frac{1}{N} \sum_{j=1}^N K_{ij}(x_{j,1} - x_{i,1})$$



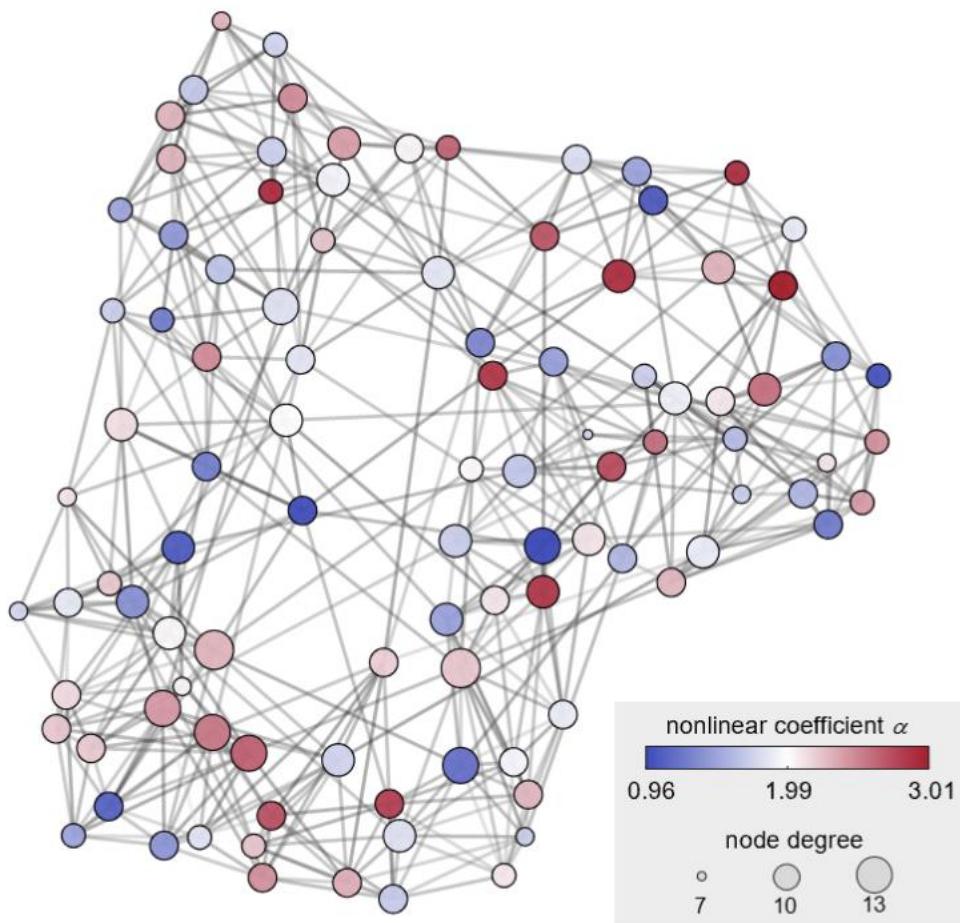
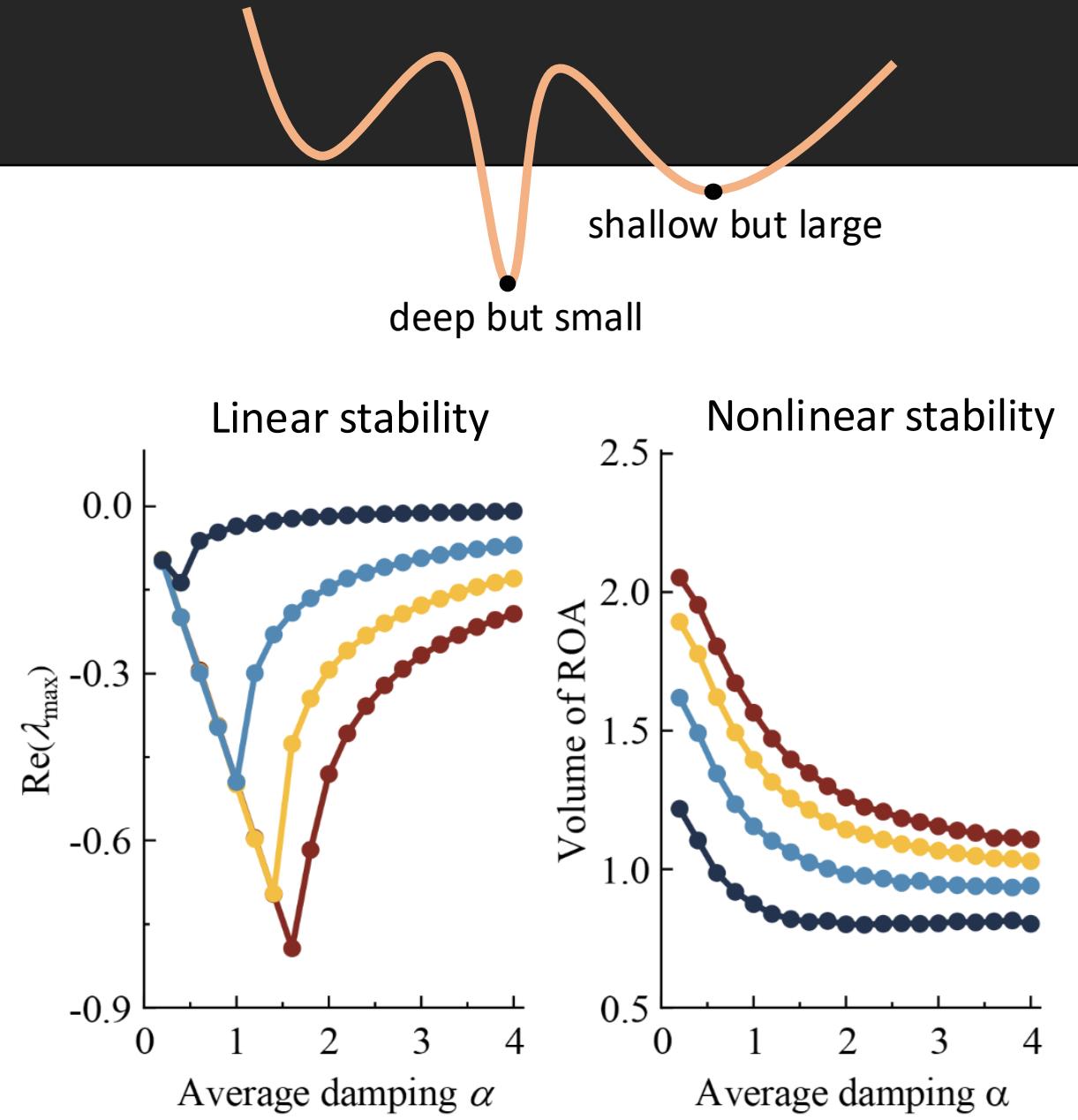
$$\tilde{V}_c = w_i \bullet i + \dots + w_{ij} \bullet j + \dots + w_{ijl} \bullet l + \dots$$



# Large-scale networks

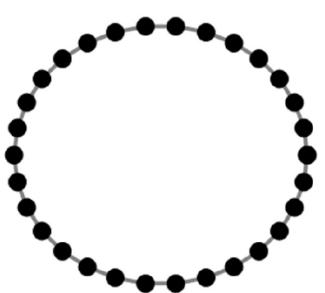


# Stability trade-offs



# Oscillator networks

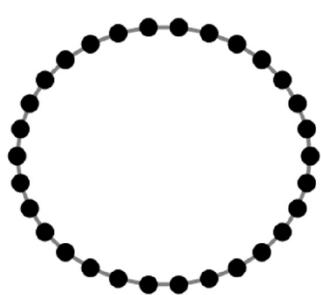
oscillator Ising machines



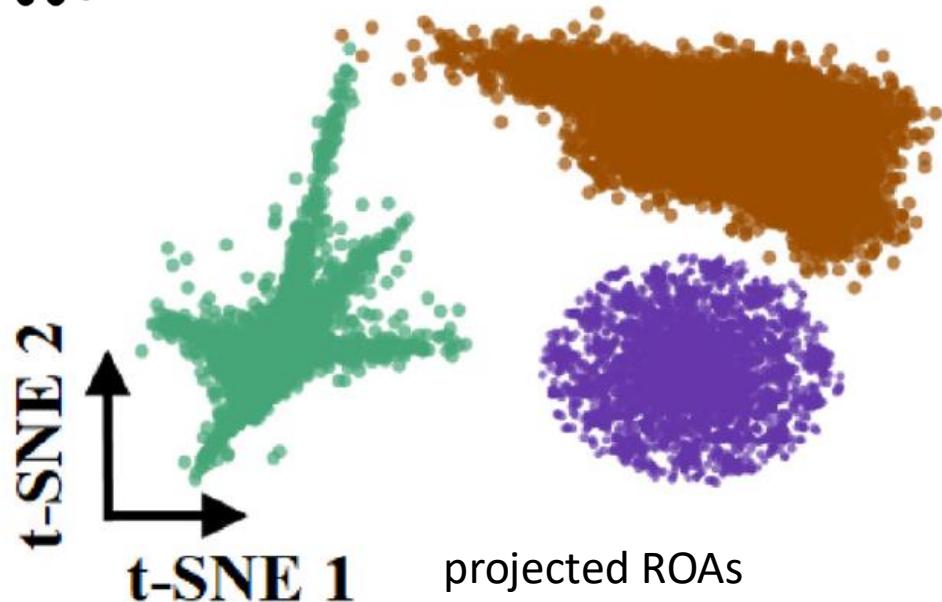
$$\dot{\phi}_i = \sum_{j=1}^N K_{ij} \sin(x_j - x_i) - \mu \sin(2\phi_i)$$

# Estimating complex ROA shapes

oscillator Ising machines

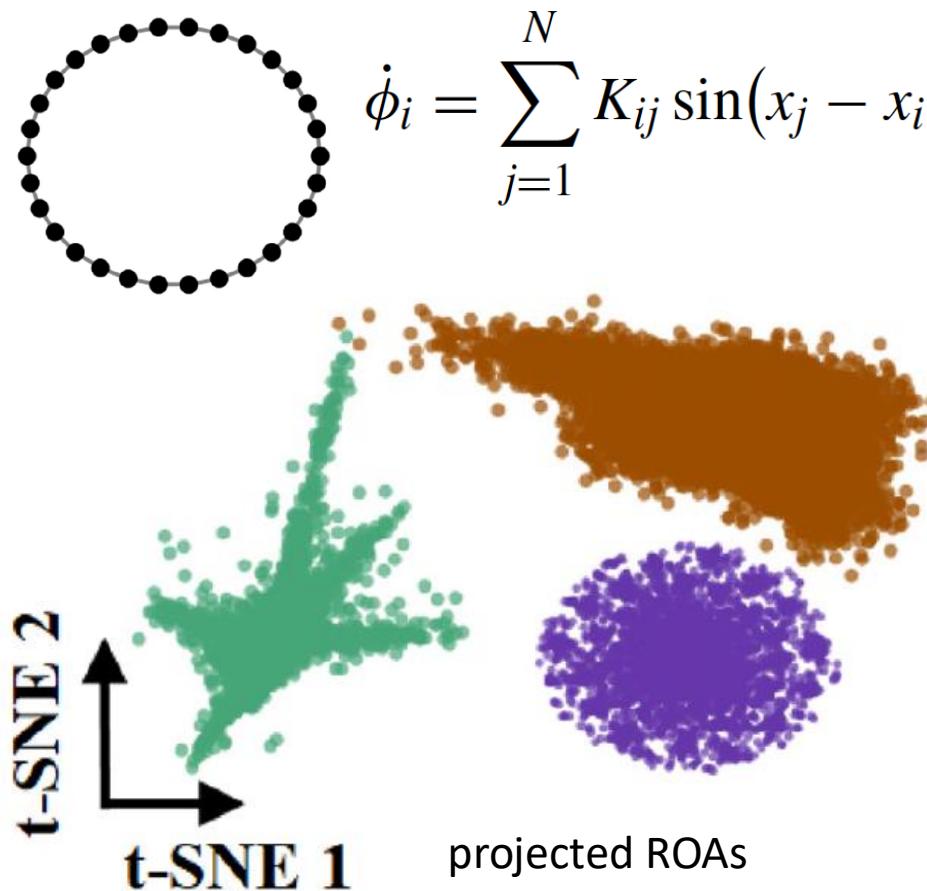
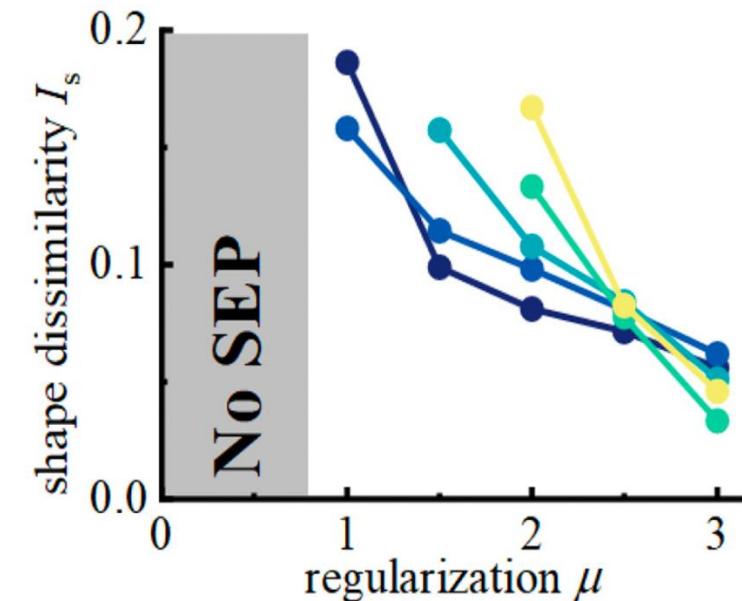
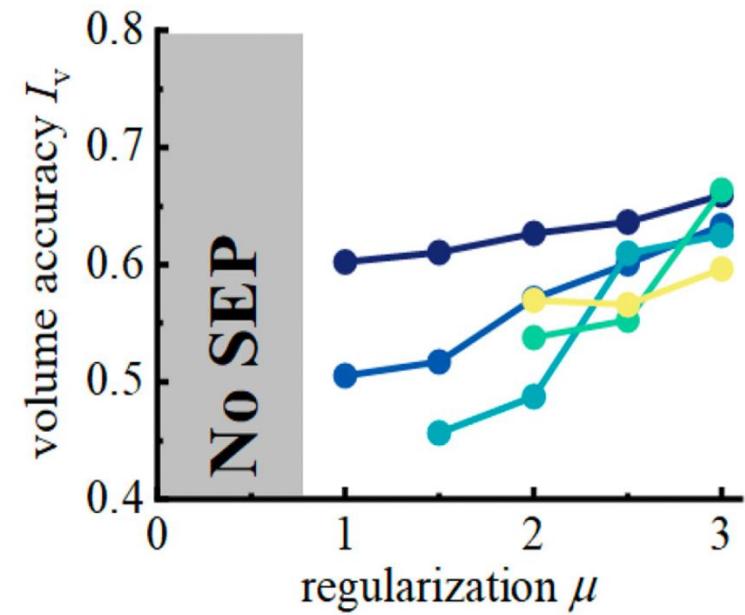


$$\dot{\phi}_i = \sum_{j=1}^N K_{ij} \sin(x_j - x_i) - \mu \sin(2\phi_i)$$



# Estimating complex ROA shapes

oscillator Ising machines



# Acknowledgements

IEEE CONTROL SYSTEMS LETTERS, VOL. 9, 2025



## Distributed Lyapunov Functions for Nonlinear Networks

Yiming Wang<sup>id</sup>, Arthur N. Montanari<sup>id</sup>, and Adilson E. Motter<sup>id</sup>, *Senior Member, IEEE*



Slides and references are available at my website:

[www.montanariarthur.com](http://www.montanariarthur.com)