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Nonlinear network
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Nonlinear network
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Lyapunov function
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Aleksandr Lyapunov

If V(x)>0,vx € D\{0}, thenx*isLyapunov stable.
V()=0
V(x) < 0,Vx € D\{0} VA

V(x,,X,)
Region of attraction: 2 = {x € D : V(x) < n}

(positively invariant set)




How to construct them?




How to construct them?

(quadratic)

V(x) = Ellxll2 or, more generally, V(x) = x! Px

(polynomial)
mass M T X
mx + c|i'|,\" +kx+kx =0
spring damper 1 1 2, 1 4
Per Y (x)=—mx,” +—kx +—k,x,
K B 2 2 A
’\\ (trigonometric) (switched systems)
'\ .
| % I 1 = o V(z) :=max {min{z' Piz,z' Pz},z' P3z}
\ \\ /’ To = — asinr; . . .
\\ 5 }; / Rossa, Tanwani, Zaccarian. Max—min Lyapunov
7\ / y 1,.2 functions for switched systems and related
' V(z)=a(l —cosz ST y
\\\x_ _’,..f’f (z) = a( 1)+ - differential inclusions. Automatica (2020).
¥ mg Khalil. Nonlinear systems (2002).




How to construct them?
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model data
driven driven

O={x€D: V(ix)<n} max n
V(x)



SOS optimization

Finding a Lyapunov polynomial function is an NP-hard problem.

Finding a Lyapunov “sum-of-squares” polynomial function can
be done efficiently with semidefinite programming (convex optimization). |

model data
driven driven

Papachristodoulou & Prajna. On the construction of Lyapunov
functions using the sum of squares decomposition.
IEEE Conference on Decision and Control (2002). 4



SOS optimization

Finding a Lyapunov polynomial function is an NP-hard problem.

Finding a Lyapunov “sum-of-squares” polynomial function can
be done efficiently with semidefinite programming (convex optimization). |

Definition. p(x) := p(x,, ..., x,) € SOS if p(x) = Z hiz(x).

L model data

Example. p(x;, x,) = x* — x1x22 + x;‘ +1=0.75(x; - x22)2 +0.250x; + x,)> + 12, driven driven

/\
: 2 2
monomials [x, X,, X{, X,X;, X5, -..]

Semidefinite programming. p(x) = z(x)'Qz(x) € SOS iff IQ0>0 = {QO + Z AQ; > OJ

min 1
Qeds™
s.t. [afﬁne function(Q) > OJ Papachristodoulou & Prajna. On the construction of Lyapunov
— functions using the sum of squares decomposition.

IEEE Conference on Decision and Control (2002). 4



SOS optimization

quadratic Lyapunov functions  degree 6 SOS Lyapunov functions

B

_~ shape function |

— estimated ROA

o~ ground-truth ROA

3 model data
driven driven
Packard, Topcu, Seiler Jr, Balas. Help on SOS. I‘}l(a))( n
X

IEEE Control Systems Magazine (2010).



SOS optimization

analytical Lyapunov functions  degree 2 SOS Lyapunov functions

—

;;;;;;;

S0
=4
-2 model data
R s, driven driven
4 V- | V(x)=0.0030sin(z1) — 0.00008z4 — 0.2683 cos(wx1)
s o 4 — 0.2649 cos(3) — 0.0030z5 + 0.0044 sin(x3) max 17
5 V(.'X,')

)
5 — 0.2377 cos(x1 ) cos(xs) + 0.0008 cos(x1 ) sin(zq)
+ 0.0047 cos(z1) sin(xs) — 0.0037 cos(z3) sin(z1)
)
)

52

estimated ROA —0.0092 cos(z3) sin(x3) — 0.1588 sin(x1 ) sin(x3)

S
— 0.0109 cos(x1)? + 0.0203 cos(x3)* — 0.0004z214

grou nd-truth ROA — 0.001625 cos(x1) + 0.0047x2 cos(x3)
+ 0.0011z4 cos(z1) — 0.0010z4 cos(zs)
Anghel, Milano, Papachristodoulou. Algorithmic construction of +0.0579z sin(z1) 4 0.021925 sin(x3)

Lyapunov functions for power system stability analysis. + 0-019_5”’3 sin(z1) + 2'0972-’”% sin(z3)
IEEE Transactions on Circuits and Systems | (2013). + 0146125 + 0.170325 +0.7614. 5



What
problem??




number of
oscillators

computational time

3 ~10 min

20 ~ 45 min

out of memory




Distributed approach

/0 N

9\\ x; =f;(x;) + ZKijg(xi,xj), i=1,..., N,
_© =1

o /.



Distributed approach

For each subset V,,, we are going to

(1) node subsets . _ _
W o build a partial function 1, : 5, » R
Q\ \ ~ @ defined on the constrained subspace
o//e\ l o 9@ Sy=xeS":x;=0,Vj¢V,)
©
o O



Distributed approach

For each subset V,,, we are going to

O node subsets . _ _
W build a partial function 1, : 5, » R
(1 , :
e\ \ ~ @ defined on the constrained subspace
I o ,
o//e\ ~ @ -~ Sy=xeS":x;=0,Vj¢V,)
(5]
o © _

v, = (3)
S, ={x

)
ES":x; =x, =x, = x5 = xg = 0}



Distributed approach

For each subset V,,, we are going to

(1) node subsets . _ _
W o build a partial function 1, : 5, » R
Q\ \ ~ @ defined on the constrained subspace
I .
o//e\ ~ @ ® Sy=xeS":x;=0,Vj¢V,)
o © ®
9/‘1’ 9\@0 S,={x€8":x; =x, = x4, = x5 = x5 = 0}
oN . 9\
! ©2 o °o | v, ={1,6}
=3 0—06 <= V¢ p— t2Eh
o .. S, ={x€8™:x, =x3 = x, = x5 = 0}
vp — {3;4)5})
5p={x€5n x1=X2=x6=0}



Distributed approach

o node subsets Sy ={x€S™: x; =x3 = x4 = x5 = 0}
~ o
e\\e ]‘ 2} o
o © /*
(1] (2]
™ 9@(@1 o ~ ;@ (: partial functionV}, : 5, » R
| |
0| ¢\ - Vo ((Pp ® In)x)




Distributed Lyapunov function

a node subsets




L

If V.(x) >0,vx € D\{0}, then the composite function Ve = prVp is a Lyapunov function.
V.(0) =0 p=1
V.(x) < 0,Vx € D\{0}



L

If V.(x) >0,vx € D\{0}, then the composite function Ve = prVp is a Lyapunov function.
V.(0) =0 p=1
V.(x) < 0,Vx € D\{0}

Conditions | and Il: If 7, is an SOS polynomial, then it is positive definite
and so will be 1 for nonnegative weights w,.



L

If V.(x) >0,vx € D\{0}, then the composite function Ve = prVp is a Lyapunov function.
V.(0) =0 p=1
V.(x) < 0,Vx € D\{0}

Conditions | and Il: If 7, is an SOS polynomial, then it is positive definite
and so will be 1 for nonnegative weights w,.

Main result: If all partial functions V}, satisfy the relationship

V1 v,

VL

<(A-B) + BVC <0 .. then all partial functions V, are

also Lyapunov functions

A

(i) Ay — By, >0 forall r=1,...,N and r # p.
i) Y& (A, —B,) <0,
(i) Yyi Bpr = 0.



L
If V.(x) >0,vx € D\{0}, then the composite function Ve = prVp is a Lyapunov function.
V.(0) =0 p=1
V.(x) < 0,Vx € D\{0}

Conditions | and Il: If 7, is an SOS polynomial, then it is positive definite
and so will be V. for nonnegative weights Wp. Use SOS optimization to find

each of the partial functions
Main result: If all partial functions V}, satisfy the relationship in parallel.

i

VL

_Vl_
: | <(4A—-B) + BV'C <0 ... then all partial functions 1/, are

also Lyapunov functions

A

(i) Ay — By, >0 forall r=1,...,N and r # p.
(ii) Zf:l(Apr — Bpr) = Oa
(i) Yyi Bpr = 0.



7.(0) =0

Izz(x) < 0,Vx € D\{0}

L
If V.(x) >0,vx € D\{0}, then the composite function V. = prVp is a Lyapunov function.

p=1

Conditions | and Il: If 7, is an SOS polynomial, then it is positive definite
and so will be V. for nonnegative weights Wp.

Main result: If all partial functions V}, satisfy the relationship

_Vl_ v,
:|<@-B)|:|+BV.<0 .. then all partial functions V, are
_I'/L_ v also Lyapunov functions
Condition lll: If wis a probability vector, then
. 4} ... and the composite function
V.<wl(A—B)|:|+V.w'B1, <0 V.isa Lyapunov function.
Vi




L

(x) > 0,Vx € D\{0}, then the composite function V. = prVp is a Lyapunov function.

If 1.
V.(0) =0 p=1
V.(x) < 0,Vx € D\{0}

Use SOS optimization to find
each of the partial functions

Conditions | and Il: If 7, is an SOS polynomial, then it is positive definite
in parallel.

and so will be V. for nonnegative weights Wp.

Main result: If all partial functions V}, satisfy the relationship
Vi

: | +BV. <0 ..thenallpartial functions I, are
v also Lyapunov functions

V1

Solve LMI

<(A-B)

A

problem to find
(A, B,w).

... and the composite function

Condition lll: If wis a probability vector, then
V. is a Lyapunov function.

Vi
+V.wlB1, <0

IZ <w!'(A—-B)
Vi




I‘ZC(O) =0
V.(x) < 0,vx € D\{0}

L
If V.(x) >0,vx € D\{0}, then the composite function V. = prVp is a Lyapunov function.

p=1

Conditions | and Il: If 7, is an SOS polynomial, then it is positive definite
and so will be V. for nonnegative weights Wp.

Main result: If all partial functions V}, satisfy the relationship

Vl

A

< (A—-B)

i

VL

+BV. <0

Condition lll: If wis a probability vector, then

I7C <wl'(4—-B)

Vi

Vi

+V.wlB1, <0

... then all partial functions
also Lyapunov functions

... and the composite function

~

. is a Lyapunov function.

I, are

p
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Optimization procedure

Composite Lyapunov function F’E -

l

Apply projections to obtain
partial Lyapunov functions

J' J' Construct partial Lyapunov function ]
by maximizing the projected ROA
Vi Vs N, ={x€eS,: V, <y} Vi

through 505 optimization

l -

solve LMI to obtain parameters (A, B, w) ~ “-‘E",'Af
and maximize (l={x €& : V. =n - ( :
— ey



Proof of concept

van der Pol oscillators

Xi,1 = —X,2,

N
: 1
Xi,2 = Oéi(xiz,l - 1) Xip+Xi1+ > Kij(xj1 — xi1)

j=1

2} 8.0 E

o

o N_g “I :
—_ — " 5

) = 0.0F %"

/\ 40} ’

5 o -8.0 -
3.0 3.0




Proof of concept

van der Pol oscillators 3 & 0
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Large-scale networks

Linear stability Nonlinear stability
OQ e 251
y | ~ | X O 00 -
e O
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nonlinear coefficient «
[
0.96 1.99 3.01 -09 ——""+—"-"—"—"—"— os5s——-"~—————
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o O O Average damping o Average damping o

7 10 13
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Stability trade-offs

A °

shallow but large

[ J
deep but small

Linear stability Nonlinear stability
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s L 20f
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Oscillator networks

oscillator Ising machines

N
O di =Y Kjsin(xj — xi) — 1t sin(2¢;)
j=1

11



Estimating complex ROA shapes

oscillator Ising machines

N
bi =Y Kysin(x; — x;) — (sin(2¢;)
j=1

t-SNE 1 projected ROAs

11



Estimating complex ROA shapes

oscillator Ising machines

N
bi =Y Kysin(x; — x;) — (sin(2¢;)
j=1

02¢ 0.8
~" g
) >
g 5 0.7
L =
Zoif RT P, —
% - B 0 = /
S ,; g \ g 0.5 cg .{j'
S
4 < Z > z
7 Yy - S (| S S - -
- . 0 I . 3 3 0 1 2 3
t-SNE 1  projected ROAs regularization 4 regularization

11
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