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Where to start?

ቊ
ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢

𝑦 = 𝐶𝑥 + 𝐷𝑢
 →  ቊ

ሶ𝑥 = 𝑓(𝑥, 𝑢)
𝑦 = ℎ(𝑥, 𝑢)

    > stability
    > controllability & observability
    > feedback control & state estimation
    > optimal control & filtering
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definition:

KL Downing. Gradient Expectations: Structure, 
Origins, and Synthesis of Predictive Neural Networks. 
MIT Press, 2023.

Build an internal model that 
minimizes free energy.
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Free Energy Principle

variational 
free energy

surprise divergence

𝐹 = − ln 𝑝 𝑠 + 𝐷𝐾𝐿 𝑞 ℎ ∥ 𝑝 ℎ 𝑠

Bayesian inference problem:

min
𝑞(ℎ)

𝐹  min
𝑞(ℎ)

𝐷𝐾𝐿 𝑞 ℎ ∥ 𝑝 ℎ 𝑠

          so that 𝑞 ℎ → 𝑝 ℎ 𝑠 . Build an internal model that 
minimizes free energy.

Links probability, uncertainty, 
and energy

F Rossi, E Garrabé, G Russo.
Free-Gate: Planning, control and policy 
composition via free energy gating
arXiv (2025)
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Associative memory model

inference
(fast timescale)

S Betteti, G Baggio, F Bullo & S Zampieri. 
Science Advances (2025).

𝑥1

𝑥2

learning
(slow timescale)



Hopfield network
Neuron activity: 

𝑥𝑖 ∈ {−1, +1}

Synapse weight: 
𝑊𝑖𝑗 ∈ ℝ

John Hopfield.
Neural networks and physical systems with 
emergent collective computational abilities.
PNAS (1982).



Hopfield network
Neuron activity: 

𝑥𝑖 ∈ {−1, +1}

Synapse weight: 
𝑊𝑖𝑗 ∈ ℝ

Neuron state represent 
patterns (e.g., images)
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Hopfield network
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energy is minimized if 
• synapse is excitatory (positive) and neurons are aligned, or
• synapse is inhibitory (negative) and neurons are anti-aligned
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Continuous time vs. Discrete time
Neuron activity: 

𝒙 ∈ ℝ𝑁

Synapse weight: 
𝑊 ∈ ℝ𝑁×𝑁

Energy function:

𝐸 𝒙 = −
1

2
Φ 𝒙 𝑇𝑊Φ 𝒙 − 𝒃𝑇𝒙 + ෍

𝑖

න
0

𝑥𝑖

Φ 𝑧 d𝑧

Goal: 
min 𝐸(𝒙)

Inference: continuous-time, recurrent neural network

ሶ𝒙 = −𝒙 + 𝑊Φ 𝒙 + 𝒃 
= −𝛻𝐸 𝒙  

if 𝑊 is symmetric, then 
𝐸 is a Lyapunov function
(more in Sandro Zampieri’s talk!)

state 𝒙

en
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gy
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inference



How does it learn??

𝜕𝐸(𝑝)

𝜕𝑊𝑖𝑗
= −𝑥𝑖

𝑝
𝑥𝑗

𝑝
=: −𝜉𝑖

𝑝
𝜉𝑗

𝑝

Recursive learning procedure for each pattern 
to find the best weight that minimizes the 
energy associated with a pattern 𝑝 ∈ 𝒫

state 𝒙
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𝐸 𝒙; 𝑊 = − ෍

𝑖,𝑗

𝑊𝑖𝑗𝑥𝑖𝑥𝑗 − ෍

𝑖

𝑏𝑖𝑥𝑖

𝝃(1)
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Neurons that 
fire together, 
wire together

Donald Hebb

Hebbian learning

if both neurons are active, then increasing 
𝑊𝑖𝑗  lowers the energy of that pattern.



Hebbian learning
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Neurons that 
fire together, 
wire together

Donald Hebb

𝑊𝑖𝑗 =
1

𝑁
𝜉𝑖

1
𝜉𝑗

1
+ 𝜉𝑖

2
𝜉𝑗

2
+  …

=
1

𝑁
෍

𝑝∈𝒫

𝜉𝑖
(𝑝)

𝜉𝑗
(𝑝)

=
1

𝑁
𝝃𝝃𝑇

𝝃(1)

𝝃(2)
𝝃(3)



Learning, and then inference

state 𝒙
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(𝒙
;𝑊

)

𝝃(1)

𝝃(2)
𝝃(3)



Stability, regions of attraction & control

state 𝒙

en
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gy
 𝐸

(𝒙
;𝑊

)

SP Cornelius, WL Kath, AE Motter. 
Nature Communications (2013).

𝝃(1)

𝝃(2)
𝝃(3)



Challenges

state 𝒙
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SP Cornelius, WL Kath, AE Motter. 
Nature Communications (2013).

1) Spurious/parasite attractors
 

𝝃(1)

𝝃(2)
𝝃(3)
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3) Contrastive Hebbian learning

𝛥𝑊𝑖𝑗 = 𝜉𝑖
𝑝

𝜉𝑗
𝑝

𝑝 ∈ dataset
− 𝑥𝑖

𝑟
𝑥𝑗

𝑟

𝑟 ∈ possible states

Hebbian term
forces patterns to 
have small energy

anti-Hebbian term
forces random states to 

have high energy

Boltzmann machine with contrastive Hebbian 
learning gradually learns to generate output 
distributions similar to the pattern data.

min
𝑊

𝐷𝐾𝐿 𝑝data(𝑠) ∥ 𝑝model 𝑠 ℎ
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John Hopfield Geoffrey Hinton
How we can design/apply these models for…

➢ combinatorial optimization (Ising machines)

➢ neuro-inspired / data-driven control
 Dmitri Chklovskii, Enrique Mallada & Jorge Cortés

Ermin Wei & Ahmed Allibhoy
Philip Anderson, Daniel Thouless, David Amit (spin glasses)

Yoshua Bengio, Yan LeCunn (deep learning)
David Rumelhart (backpropagation) 

Terrence Sejnowski (Boltzmann machines) 
Alex Krizhevsky, Ilya Sutskever (AlexNet)

et al…
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