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Time Speaker Title

08:30-08:40 Welcome and opening remarks

08:40- 09:00 Arthur Montanari Introduction on dynamical models for neurocomputation

Program

09:00- 09:30 Rodolphe Sepulchre Neuromorphic control: shaping the memory of a machine

Asymmetric Hopfield networks for dynamic memory

Associative models
for computation

09:30-10:00 Sandro Zampieri

models
10:00-10:30 Coffee break
10:30-11:00 Francesco Bullo Perspectives on biologically plausible optimization
11:00-11:30 Giovanni Russo Neural policy composition from free energy minimization

Neural networks
& dynamics

“Forget the past, fast”: A simple principle for robust,

11:30-12:00 Leo Kozachkov . , . . ,
input-driven multi-area brain computation

12:00- 14:00 Lunch break

14:00 - 14:30 Ahmed Allibhoy Computation with coupled oscillator networks

Unconventional
computing

14:30 - 15:00 Ermin Wei Extended-variable probabilistic computing with p-dits

15:00- 15:30 Lightning talks

15:30 - 16:00 Coffee break

<« © 16:00-16:30 Dmitri Chklovskii Reconceptualizing neurons as dynamical controllers
3 E

§ = 2. 17 . Nonparametric analysis and control of dynamical

E 2 16:30-17:00 Enrique Mallada systems: Stability, safety and policy improvement

= O

ET

2 § 17:00-17:30 Jorge Cortés Dimensionality control in hierarchical brain networks

17:30-18:00 Open discussion and closing remarks




Lightning Talks

Each lightning talk will consist of 4 min presentations plus 1 minute for questions. The abstracts and list of authors
are included at the end of the document.

Speaker Title

Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient

Arthur de Oliveira
systems

gPC-based robustness analysis of neural systems through probabilistic

Uros Sutulovic .
recurrence metrics

Max Emerick Classification of limit solutions of a mean-field oscillator Ising model

Recurrent and multi-modular computational model for conscious cognition: An

Arthur Rodrigues : . . : .
integrative approach across major theories of human consciousness

Efficient and faithful reconstruction of dynamical attractors using homogeneous

Daniele Proverbio . .
differentiators

lan Xul Belaustegui Tunable thresholds and frequency encoding in a spiking NOD controller
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Where to start?

x = Ax + Bu N x = f(x,u)
y=Cx+Du y = h(x,u)

> stability

> controllability & observability

> feedback control & state estimation
> optimal control & filtering
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Free Energy Principle

REVIEWS |}

The free-energy principle:
a unified brain theory?

Karl Friston

internal model
p(h|s)

what are the (hidden)
causes h that explain
the sensory signals s?
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Free Energy Principle
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@ optimizes
. . redictions
The free-energy principle:  erception

a unified brain theory? /\
environment

Karl Friston

F = E[E(s,h)] — H[p(h|s)]

free energy energy entropy
(probability) (uncertainty)

\/ internal model
p(h|s)

action what are the (hidden)
minimizes causes h that explain
prediction errors  the sensory signals s7?
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@ optimizes
. . redictions
The free-energy principle:  erception

a unified brain theory? /\
Karl Friston environment

Build an internal model that
minimizes (variational) free energy.

F = EIE(s, W] - Hlg(W)]

h'_l
variational energy entropy
free energy (probability) (uncertainty)

variational approximation
q(h) - p(hls)

\/ internal model
p(h|s)

action what are the (hidden)
minimizes causes h that explain

prediction errors  the sensory signals s7?



Free Energy Principle
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The free-energy principle: perception

a unified brain theory? /\
environment

Karl Friston Build an internal model that
minimizes free energy.

p(E())

F = E[E(s,h)] — H[q(h)] I
| J || T J | | Y J
variational energy entropy
E(x)

free energy
E(x)

Boltzmann distribution: p(E(x)) X e kT =~e

F = E[-Inp(s, )] + z g(h) Inq(h)
h

—E(x)

\/ internal model
p(h|s)

action what are the (hidden)
causes h that explain
the sensory signals s?

minimizes
prediction errors



KL Downing. Gradient Expectations: Structure,
Origins, and Synthesis of Predictive Neural Networks.

Free Energy Principle

REVIEWS |}

@ optimizes
. . redictions
The free-energy principle:  erception

a unified brain theory? /\
Karl Friston environment

Build an internal model that
minimizes free energy.

p(E())
F = E[E(s,h)] — H[q(h)] I
| J || T J | | Y J
variational energy entropy
free energy E(x)

E(x)
Boltzmann distribution: p(E(x)) X e kT =~e

F = E[-Inp(s, )] + z g(h) Inq(h)
h

. o \/ internal model
(Bayes theorem) p(h|s)

—E(x)

F =—Inp(s) + pKL(q(h) I p(hls)) action what are the (hidden)
— Y Y P(z) minimizes causes h that explain
variational  surprisal Kullback-Leibler definition: DL (P || Q) }_: P(z) log " prediction errors the sensory signals s?

free energy divergence , Qlx) '

-



KL Downing. Gradient Expectations: Structure,
Origins, and Synthesis of Predictive Neural Networks.
MIT Press, 2023.

Free Energy Principle
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The free-energy principle: perception

a unified brain theory? /\
environment

Karl Friston

_F=-Inp(s) + ,DKL(q(h)' I p(hls))

variational surprise divergence

free energy . .. . ~
Links probability, uncertainty,
and energy

\/ internal model
p(h|s)

action what are the (hidden)
causes h that explain
the sensory signals s?

minimizes
prediction errors



KL Downing. Gradient Expectations: Structure,
Origins, and Synthesis of Predictive Neural Networks.

Free Energy Principle

REVIEWS |}

predictions

@ optimizes

The fr_ee-enel_”gy principle: perception

a unified brain theory? /\
Karl Friston environment

_F=-Inp(s) + ,DKL(q(h)' I p(hls))

variational surprise divergence
free energy

Links probability, uncertainty,
and energy

Bayesian inference problem:

gr%}lr)lF < g%}lr)lDKL(q(h) I p(hls)) \/ internal model
p(h|s)

Build an internal model that
so that q(h) — p(hls). e action what are the (hidden)
minimizes free energy. :
minimizes causes h that explain

prediction errors  the sensory signals s7?




Free Energy Principle

F Rossi, E Garrabé, G Russo.
Free-Gate: Planning, control and policy

composition via free energy gating
arXiv (2025)

N
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The free-energy principle:
a unified brain theory?

Karl Friston

_F=-Inp(s) + ,DKL(q(h)' I p(hls))

variational surprise divergence (

f . g e -
fee energy Links probability, uncertainty,

and energy

Bayesian inference problem:

min F < minDKL(q(h) I p(hls))

Attention and biased competition
{4, =arg min jth
Optimization of synaptic gain

representing the precision
(salience) of predictions

> da

Associative plasticity

T T
Ho; = ('0,,-55

Optimization of synaptic efficacy

T ——
Perceptual learning and memory
Up=arg min _.'th

Optimization of synaptic efficacy
to represent causal structure
in the sensorium

Probabilistic neuronal coding

q() =N (u.Z)

Encoding a recognition density
in terms of conditional
expectations and uncertainty

q(h) q(h)

so that g(h) — p(hls). Bq/lq an internal model that
minimizes free energy.

p€’= D#S) - 0,e07EM g (=)

Minimization of prediction error
with recurrent message passing

The Bayesian brain hypothesis
w = arg min D (q(9)[|(p(9]3))

N Minimizing the difference between a
recognition density and the conditional
density on sensory causes

~emNV Wl | 7 -

The free-energy principle

a, u,m = arg min F (§,u|m)

»  Minimization of the free energy of
4 sensations and the representation
@ of their causes

Model selection and evolution

m = arg min Ith

Optimizing the agent’s model and
priors through neurodevelopment
and natural selection

Predictive coding and hierarchical inference

Computational motor control
a=-0."¢

Minimization of sensory
prediction errors

-

3| Optimal control and value learning

a, p =arg max V (5|m)

“# Optimization of a free-energy
_ | bound on surprise or value

-
™ Infomax and the redundancy

| minimization principle

q

= arg max {I (3,u)- H(u)}

Maximization of the mutual
information between sensations
and representations




Associative memory model

S Betteti, G Baggio, F Bullo & S Zampieri.
Science Advances (2025).



Associative memory model

S Betteti, G Baggio, F Bullo & S Zampieri.
Science Advances (2025).

learning
(slow timescale)



Associative memory model

S Betteti, G Baggio, F Bullo & S Zampieri.
Science Advances (2025).

learning
(slow timescale)



Hopfield network

Neuron activity:
X; € {"']ﬂ 'Fjl}

Synapse weight:
Id/ii e R

axo-dendritic
synapse
(site of

postsynaptic

inhibition

inhibitory
neuron

T LR

John Hopfield.
Neural networks and physical systems with

emergent collective computational abilities.
PNAS (1982).

Dendrites

. aX0-axonic
synapse
(site of
presynaptic
inhibition)



Hopfield network

axo-dendritic

Neuron activity: synapse
x; € {—1,+1} SN

. Dendrites
Synapse weight: =N
le € R Axons
steof
inhibition)
[ ® o e o)
° O oo O
[ O ofilffile" ¢ O
® . oJililite" O
o < ''0) oMl " O
— ® O oflie" °
o 0 O O O
Neuron state represent o ° o o 0

patterns (e.g., images)



Hopfield network

axo-dendritic
synapse
(site of

postsynaptic

inhibition

Neuron activity:
X; € {—1, +1}

Synapse weight:
Wij eER

axo-axonic
synapse
(site of
presynaptic ‘4
inhibition)

Energy function:

E(.X) = — Z Wl]xlx] — Z bl-xl-
i,j [




Hopfield network

state x

axo-dendritic
synapse
(site of

Neuron activity:

x; € {—=1,+1} SRy |

Synapse Weight: \ % ( Dendrites

Wij E R Axons
Energy function: o

D 2

E(x) = - Z Wl-jxixj — Z b;x;

i,j i
Goal:

min E (x)

energy is minimized if
* synapse is excitatory (positive) and neurons are aligned, or
* synapse is inhibitory (negative) and neurons are anti-aligned



Hopfield network: Inference

Neuron activity:
inference X € {_1' +1}
Synapse weight:

Wij eER

Energy function:
E(.X) = — Z WUXLX] — Z bl-xl-
i,j i

Goal:

min E (x)

Inference: discrete-time system, asynchronous update
(

+1 is preferred if z Wijxj+b; >0

neuron flips its state eed
J#i

in order to align with X; =14
most of its neighbors —1 is preferred ifz Wijxj +b; <0
\ J#L




Hopfield network: Inference

Neuron activity:

inference Xi € {_1’ +1}

Synapse weight:
Wij eER

Energy function:
E(.X) = — Z WUXLX] — Z bl-xl-
i,j i

Goal:

min E (x)

.
+1 is preferred if z Wijxj+b; >0
EJ
E Crouse. Hopfield networks: &8 ::"' -' - —1is preferred lfz Wif Xj + by <0
Neural wave machines (2022). l.'! "?-l.—é s \ JE!



Hopfield network: Inference

inference

A

E Crouse. Hopfield networks: '
Neural wave machines (2022). 3 ‘E

Neuron activity:
X; € {—1, +1}

Synapse weight:
Wij eER

Energy function:

E(.X) = — Z WUXLX] — Z bl-xl-
i,j [

Goal:

min E (x)

Inference: discrete-time system, asynchronous update

’

\

+1 is preferred if z Wijxj+b; >0

J#L

—1 is preferred ifz Wijxj+b; <0

J#i



Hopfield network:

. ke
--5 Pl

inference

E Crouse. Hopfield networks:

*I ] B
-

Neural wave machines (2022). afa "l.lIT o

Inference

Neuron activity:
X; € {—1, +1}

Synapse weight:
Wij e R

Energy function:

E(.X) = — Z WUXLX] — Z bl-xl-
i,j [

Goal:
min E (x)

Inference: discrete-time system, asynchronous update

)
+1 is preferred if z Wijxj+b; >0
X; = 4 J*i
L —1 is preferred ifz Wijxj+b; <0
- x j#



Continuous time vs. Discrete time

Neuron activity:
X; € R

Synapse weight:

W :

L ER

Energy function:

Xi
E(x) = — Z WUXLX] — Z bl-xi + Z f cI)(Z)dZ
7] 7 7 0

Goal:
min E (x)

Inference: continuous-time, recurrent neural network
N
j:

5(1' = —Xj + WUCD(X]) + bi

R %

Neuron activity:
X; € {—1, +1}

Synapse weight:
Wij eER

Energy function:
E(X) = — Z WUXL.X'] — Z bl-xi
i,j i

Goal:
min E (x)

Inference: discrete-time system, asynchronous update
(
+1 is preferred if z Wijxj+b; >0

EJ
X;i = S ’

—1 is preferred ifz Wijxj+b; <0
L J#L




Continuous time vs. Discrete time

Neuron activity:
X; € R

Synapse weight:

W :

Energy function:

Xi
E(x) = — Z WUXLX] — Z bl-xl- + Z j cD(Z)dZ
7] 7 7 0

Goal:
min E (x)

Inference: continuous-time, recurrent neural network

N
.9'Cl' = —Xj + z WUCD(X]) + bi

R

j=1




Continuous time vs. Discrete time

Neuron activity:
X; € R

Synapse weight:

W :

Energy function:

Xi
E(x) = — Z WUXLX] — Z bl-xl- + Z j cI)(Z)dZ
7] 7 7 0

Goal:
min E (x)

Inference: continuous-time, recurrent neural network

N
X'l' = —Xj + z WUCD(X]) + bi

R

j=1




Continuous time vs. Discrete time

Neuron activity:
x € RN

Synapse weight:
W € RNXN

Energy function:

E(x) = —%CD(x)TWCD(x) — bTx + z jxidb(z)dz
~ Jo

Goal: if W is symmetric, then
min E'(x) E is a Lyapunov function

(more in Sandro Zampieri’s talk!)

Inference: continuous-time, recurrent neural network

x=—-x+Wod(x)+b
= —VE(x)

energy E

inference

k

>

state x



How does it learn?

E(x; W) = — Z Winin — Z bixl-
Lj i

Recursive learning procedure for each pattern
to find the best weight that minimizes the
energy associated with a patternp € P

JE®)
state x oW,

energy E

= P @

@ OO0 000e

g(l)



Neurons that

Hebbian learning iretogether,

wire together

E(x; W) - - Z Winin - Z bixl- _ ; /
L] i

Donald Hebb

[
> . :
U Recursive learning procedure for each pattern
o . . . e .
= to find the best weight that minimizes the
energy associated with a patternp € P
(»)
> AN O WO NI OO
5 state x oW ; L7 ' RS
Y T : 22222200 . . . .
ececooce 20022200  QREBNEL ifboth neurons are active, then increasing
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Hebbian learning

energy E

A
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: state x
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Neurons that
fire together,

wire together

E(x; W) = — Z Winin — Z bixl-
Lj i

Recursive learning procedure for each pattern
to find the best weight that minimizes the
energy associated with a patternp € P
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Learning, and then inference

energy E(x; W)
=

>
state x
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SP Cornelius, WL Kath, AE Motter.
Nature Communications (2013).
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Challenges

1) Spurious/parasite attractors
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Challenges

1) Spurious/parasite attractors

2) Limited memory capacity: Cax = 0.14N for random patterns
: DJ Amit, H Gutfreund, H Sompolinsky. PRL (1985).

R G e N ~ for sparse patterns
L e NN Cmax flogf P P

. o

MV Tsodyks MV, MV Feigel'man.
Europhysics Letters (1988).




Challenges and solutions

Spurious/parasite attractors
Limited memory capacity
Lack of generalizability

-—
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Challenges and solutions

1) Spurious/parasite attractors
2) Limited memory capacity
3) Lack of generalizability

1) Oscillatory associative memory models

T Nishikawa, YC Lai YC, FC T Guo, AOgranovich, AR Venkatakrishnan, MR
> Hoppensteadt. PRL (2004). Shapiro, F Bullo, F Pasqualetti. [EEE CDC (2025).

state x 2) Dense associative memory models

D Krotov & J Hopfield, NeurIPS 2016. D Krotov, B Hoover, P Ram, B Pham.
arXiv:2507.0621

3) Firing-rate models, recurrent NNs, spiking NNs

R Sepulchre. Proc. IEEE (2022). TA Keller, M Welling. /ICML (2023).

S Jafarpour, A Davydov, F Bullo. F Effenberger, P Carvalho, | Dubinin,
IEEE TAC (2023). W Singer. PNAS (2025).

L Kozachkov, M Ennis, J-J Slotine.
NeurlPS (2022).



generate new patterns, nhever seen
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generate new patterns, nhever seen

pattern completion

From Hopfield to Boltzmann machines
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Deep

R Salakhutdinov, G Hinton.

Boltzmann machines. AISTATS (2009).




From Hopfield to Boltzmann machines

pattern Comp[etion generate new patterns, nhever seen

training data model data

[

probability
probability

pattern state x pattern state x



From Hopfield to Boltzmann machines

pattern Comp[etion generate new patterns, nhever seen

Further cognitive realism to Hopfield networks through 3 main modifications:
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pattern Comp[etion generate new patterns, nhever seen

Further cognitive realism to Hopfield networks through 3 main modifications:

1) Hidden states

Input / output / sensory
neurons

O..
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From Hopfield to Boltzmann machines

pattern Comp[etion generate new patterns, nhever seen

Further cognitive realism to Hopfield networks through 3 main modifications:

2) Stochasticity

1) Hidden states
Inference (discrete-time system)

Input / output / sensory

neurons
O . . +1 with probability p,,
X; =
> ‘
L —1 otherwise

-

hidden
neurons

O
energy E

>
state x




From Hopfield to Boltzmann machines

pattern Comp[etion generate new patterns, nhever seen

Further cognitive realism to Hopfield networks through 3 main modifications:

1) Hidden states 2) Stochasticity
Input / output / sensory Inference (discrete-time system)
neurons 1 1
. . +1 with probability py, = 5 = S Wx
X: = —_— jUvigtg
‘k f“ t 1+e T 1+e T

—1 otherwise

Pon X = +1

hidden
neurons

lowering
temperature

xl-=—1 AEZZ]-WL']'X]'



From Hopfield to Boltzmann machines

pattern Comp[etion generate new patterns, nhever seen

Further cognitive realism to Hopfield networks through 3 main modifications:

1) Hidden states 3) Contrastive Hebbian learning
O NN »
E N S AW, = <'fi(p)f,(-p)> - <x-( )x} )>
PAN BV p € dataset r € possible states
| J l J
1 |
Hebbian term anti-Hebbian term
forces patterns to forces random states to
have small energy have high energy

A

energy
2) Stochasticity
Pon| xi=+1 /

J temperature
= 1 1 |

state
x=-1 AE =3 W;;x;




From Hopfield to Boltzmann machines

pattern Completion generate new patterns, nhever seen

Further cognitive realism to Hopfield networks through 3 main modifications:

1) Hidden states 3) Contrastive Hebbian learning
r) (r
AW;; = <€i<p> 5}@)) _ <x_< )2 )> |
p € dataset T € possible states
\ ] J
Y Y
Hebbian term anti-Hebbian term
forces patterns to forces random states to
have small energy have high energy

Boltzmann machine with contrastive Hebbian
learning gradually learns to generate output
distributions similar to the pattern data.

2) Stochasticity

pﬂn \ X; = +1

%:g mwi/n DKL(Pdata(S) | Pmode1(5|h))

J temperature
- L 1 1 l

;= —1 AE = ¥, Wyx;



Insights from classical work

P
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John Hopfield Geoffrey Hinton

Philip Anderson, Daniel Thouless, David Amit (spin glasses)
Yoshua Bengio, Yan LeCunn (deep learning)
David Rumelhart (backpropagation)
Terrence Sejnowski (Boltzmann machines)
Alex Krizhevsky, Ilya Sutskever (AlexNet)
etal...
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osclllator  yranstormer
models

CBF
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