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Lang-Kobayashi model

Electric field dynamics

Carrier number dynamics

phase-amplitude 
coupling

natural 
frequency

delayed-coupling 
(external cavity) 

current 
source

damping media gain

for single-mode semiconductor diode lasers
                                   (e.g., GaAs, InP, GaN)

R Lang, K Kobayashi. 
IEEE J. Quantum Electronics (1980).
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Nonlinear time-delay system (LK model)

laser dynamics delayed coupling

Linearization around the desired synchronous state

Some stability analysis to study it
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state is stable
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state is coherent

disorder level 𝜎𝜔

𝜆max < 0
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Disorder provides a reliable 
mechanism for coherent beam 
generation, regardless of the choice 
of parameter, network structure, 
and number of lasers. 



Take-home message #2

Disordered systems exhibit larger stability 
margins, outperforming homogeneous ones



Interpretability

Pre-specified synchronous state:

disorder: 𝜔𝑗 ∼ 𝒩 0, 𝜎2

Why does disorder drive 
the stability of this state?
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Master stability function analysis (non-identical lasers)

instantaneous 
dynamics

3-dimensional 
vector (mode)

mode mixingnetwork
eigenvalue

For non-delayed systems: Pecora, Carroll. PRL (1998).
          For delayed systems: Choe, Dahms, Hövel, Schöll. PRE (2010).

For non-delayed systems: Sugitani, Zhang, Motter. PRL (2021).
          For delayed systems: Barioni, Montanari, Motter. PRL (2025).

Interpretability
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Lasers sync because of (not despite!) heterogeneity when… time delays are significant and 
there is strong phase-amplitude coupling in gain media (e.g., semiconductor lasers)

Rajarshi Roy (UMD)



What’s next?

Disorder for 
physical computing

A Allibhoy, AN Montanari, F Pasqualetti, AE Motter. 

Global optimization through heterogeneous oscillator Ising machines. 

Proceedings of the IEEE Conference on Decision and Control (2025). 
arXiv:2505.17027
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