

Disorder-promoted synchronization and coherence in coupled laser networks

Arthur Montanari

Center for
Network Dynamics

Department of Physics and Astronomy
Northwestern University

January 9, 2026

Disorder-promoted synchronization and coherence in coupled laser networks

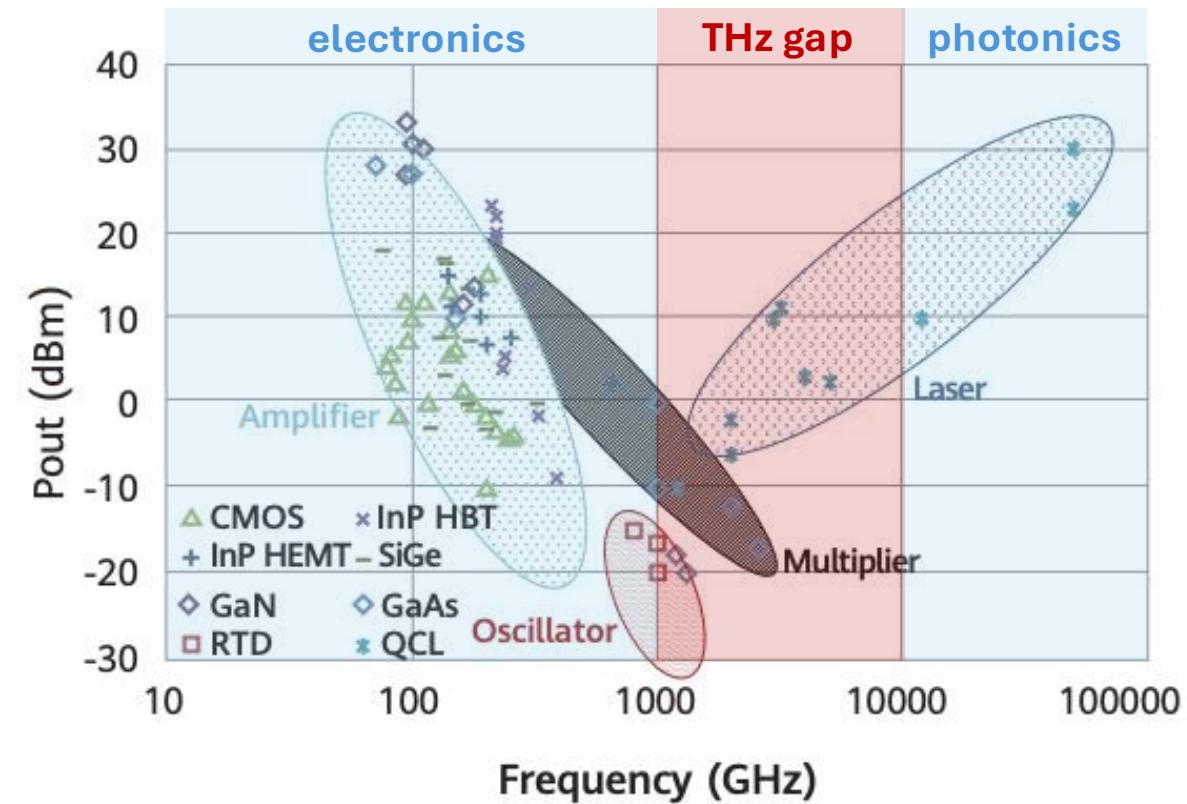
Arthur Montanari

Center for
Network Dynamics

Department of Physics and Astronomy
Northwestern University

January 9, 2026

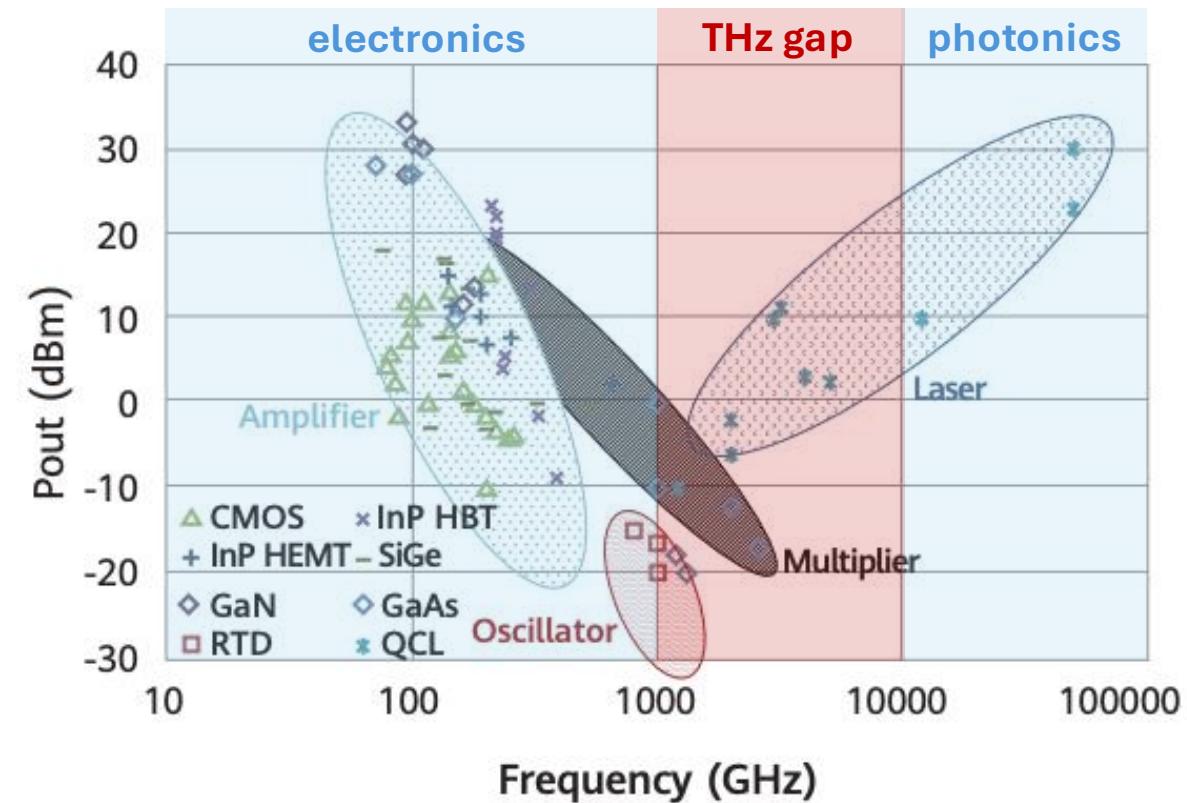
The THz Gap



Potential applications of THz gap:

- imaging, spectroscopy, sensing (ideal penetration)
- high-speed, free-space communication (wireless communication, LIDAR)
- THz computing (analog, neuromorphic computing, Ising machines)

The THz Gap

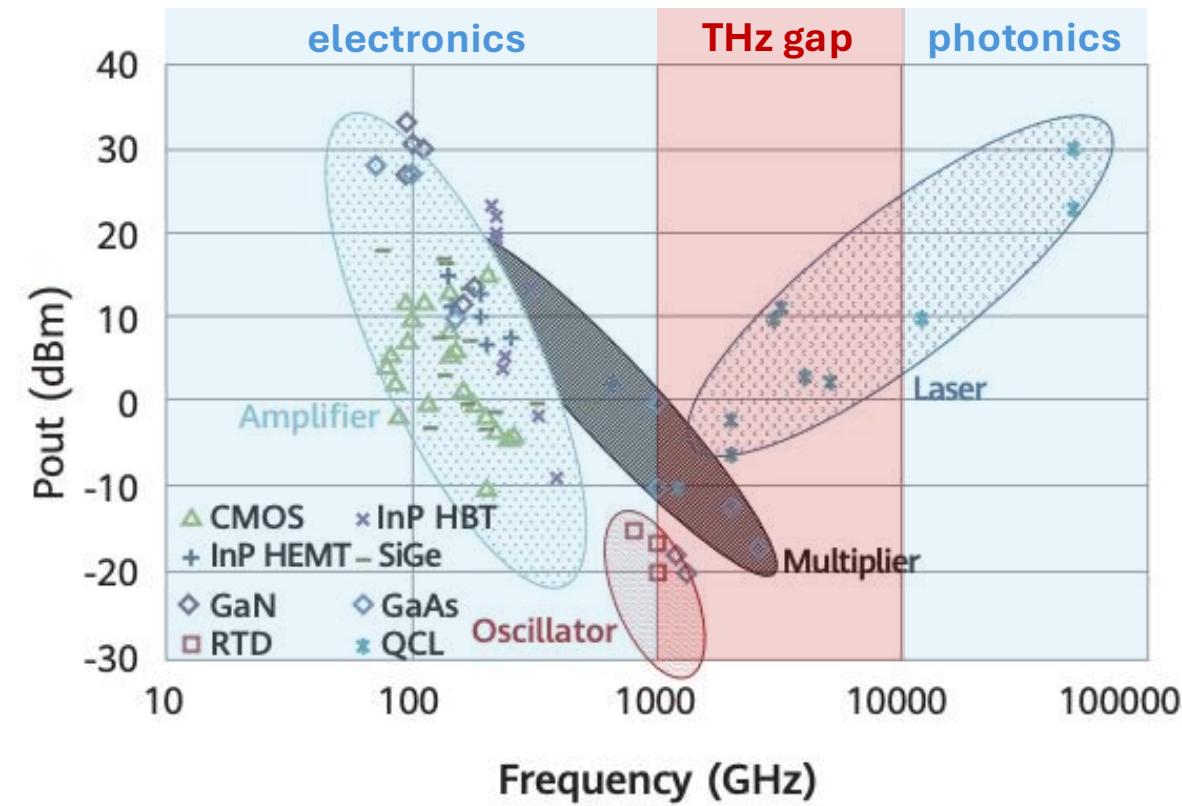


Potential applications of THz gap:

- imaging, spectroscopy, sensing (ideal penetration)
- high-speed, free-space communication (wireless communication, LIDAR)
- THz computing (analog, neuromorphic computing, Ising machines)

Challenge: low power output ($P \approx 1$ mW per laser)

The THz Gap

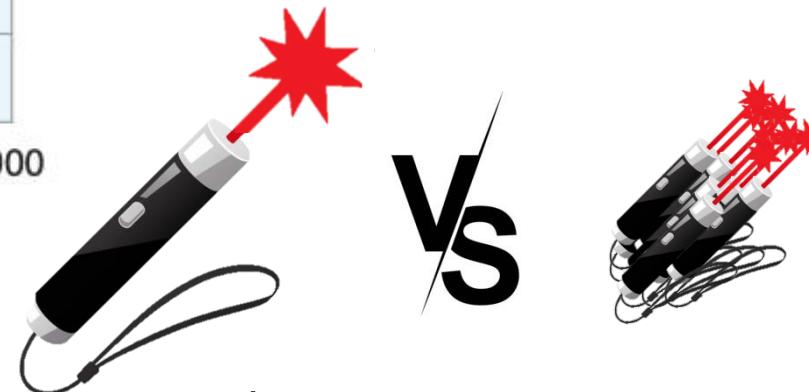


Potential applications of THz gap:

- imaging, spectroscopy, sensing (ideal penetration)
- high-speed, free-space communication (wireless communication, LIDAR)
- THz computing (analog, neuromorphic computing, Ising machines)

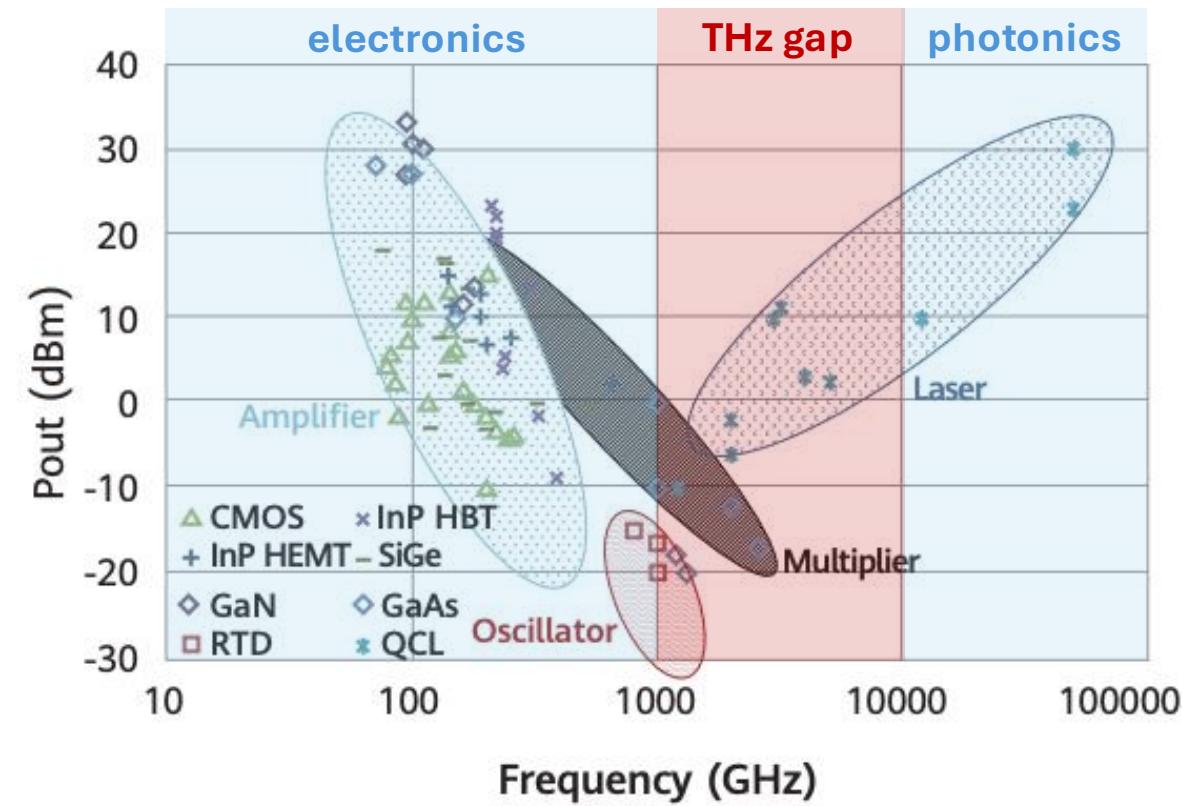
Challenge: low power output ($P \approx 1$ mW per laser)

SOLUTION?



how to generate
coherent beams?

The THz Gap

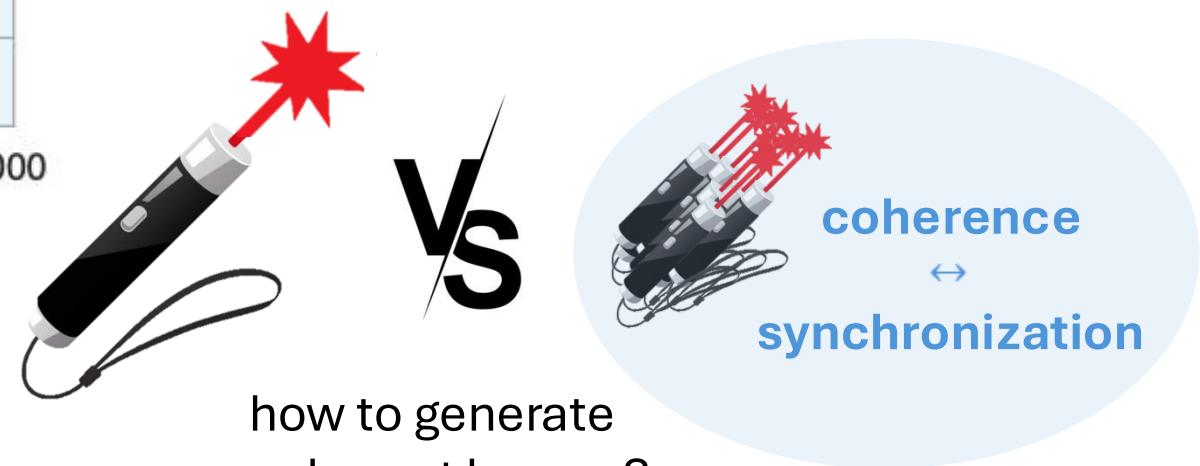


Potential applications of THz gap:

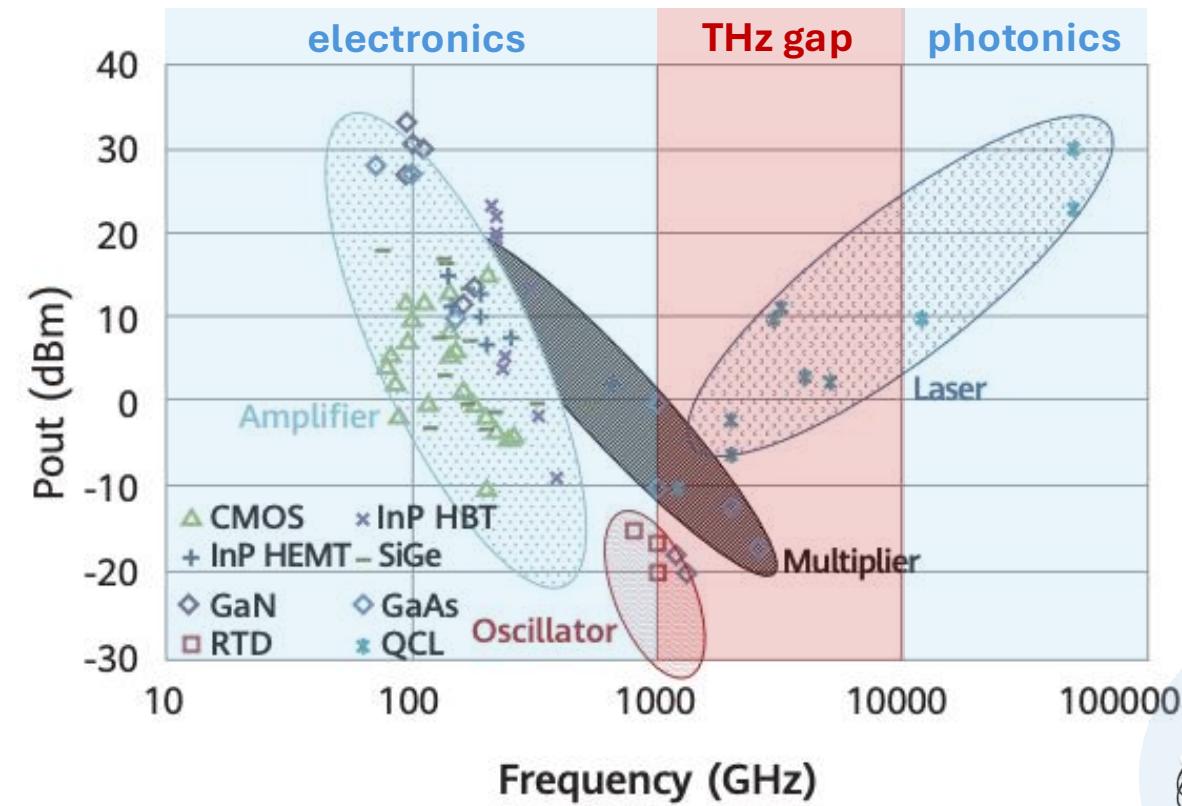
- imaging, spectroscopy, sensing (ideal penetration)
- high-speed, free-space communication (wireless communication, LIDAR)
- THz computing (analog, neuromorphic computing, Ising machines)

Challenge: low power output ($P \approx 1$ mW per laser)

SOLUTION?



The THz Gap

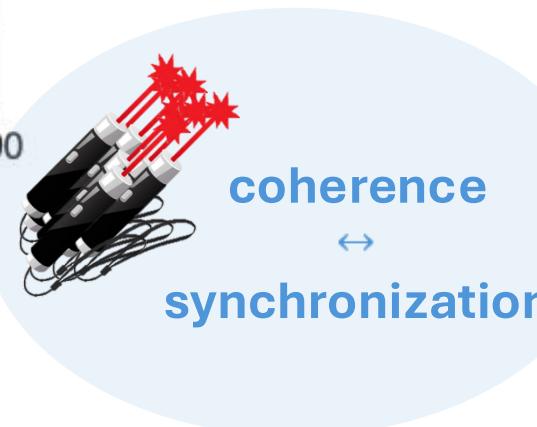
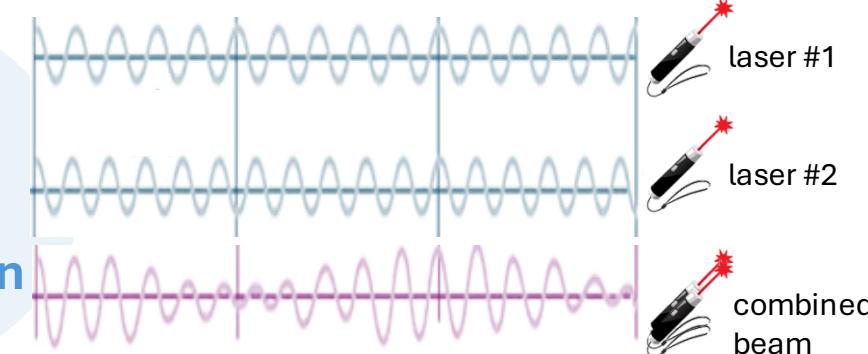


Potential applications of THz gap:

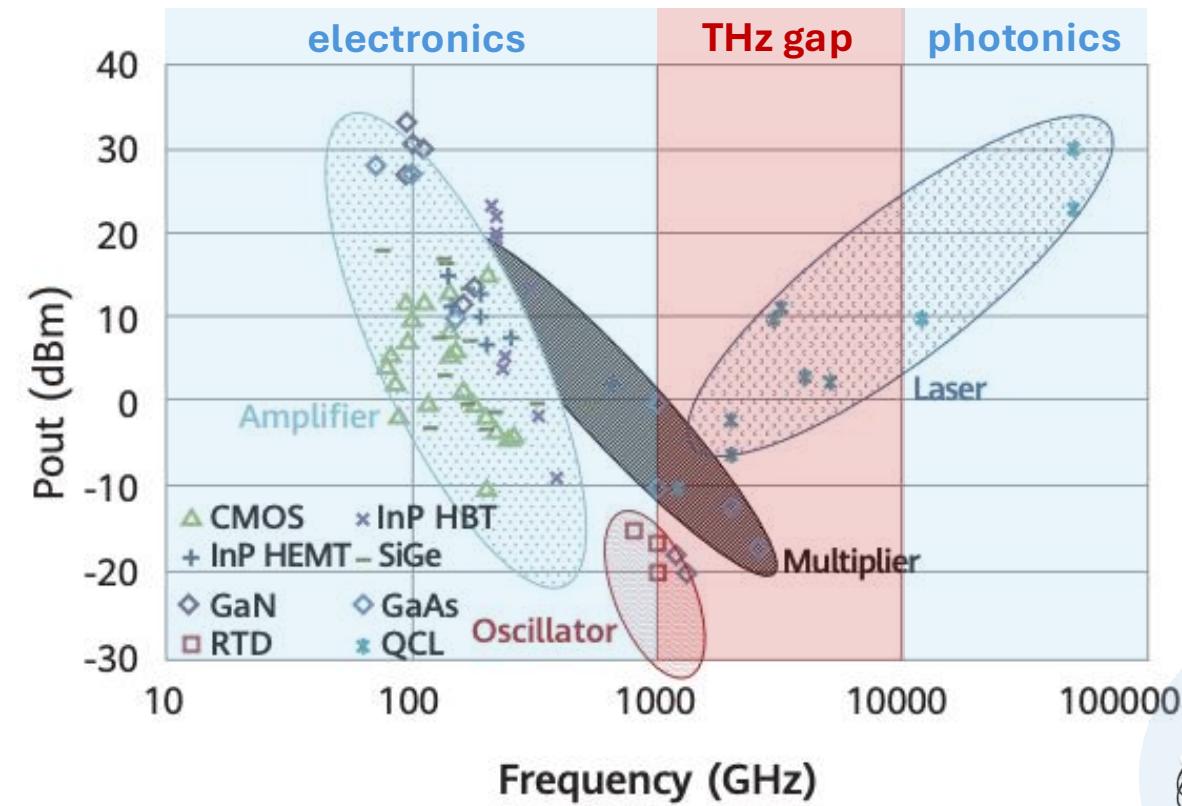
- imaging, spectroscopy, sensing (ideal penetration)
- high-speed, free-space communication (wireless communication, LIDAR)
- THz computing (analog, neuromorphic computing, Ising machines)

Challenge: low power output ($P \approx 1$ mW per laser)

SOLUTION?



The THz Gap

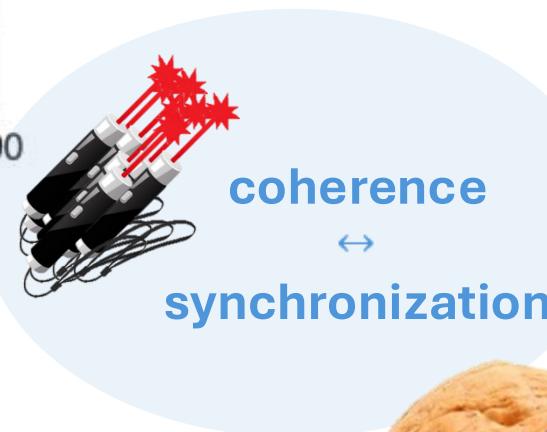
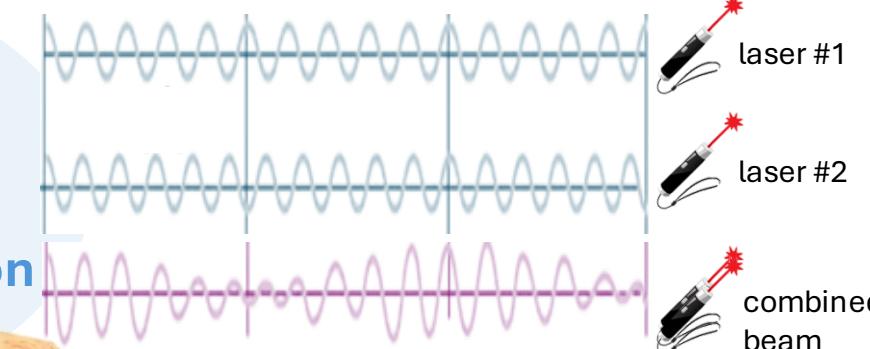


Potential applications of THz gap:

- imaging, spectroscopy, sensing (ideal penetration)
- high-speed, free-space communication (wireless communication, LIDAR)
- THz computing (analog, neuromorphic computing, Ising machines)

Challenge: low power output ($P \approx 1$ mW per laser)

SOLUTION?

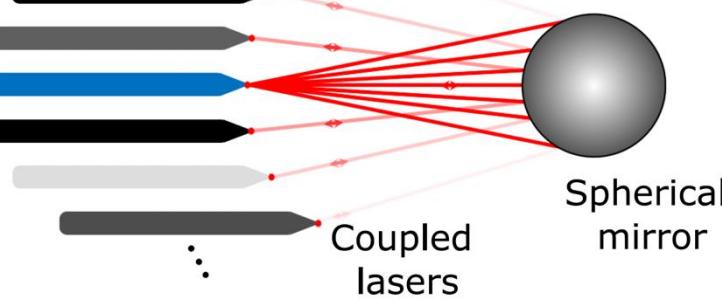
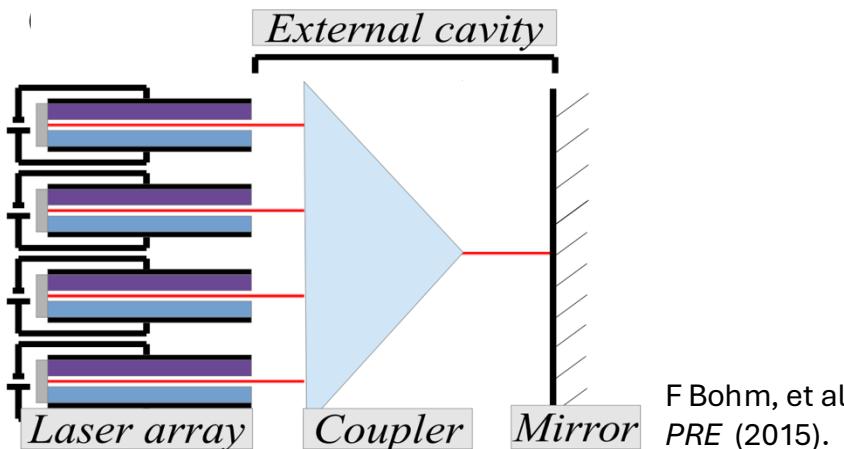


Find a mechanism that forces the laser beams to interact & sync

Laser sync

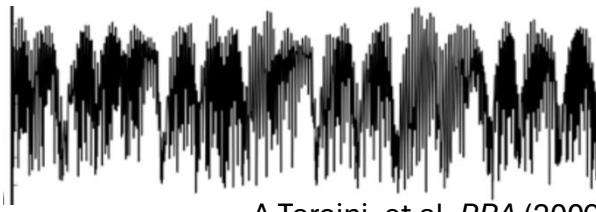
Find a mechanism that forces the laser beams to interact & sync

AED Barioni, **ANM**,
AE Motter. *PRL* (2025).



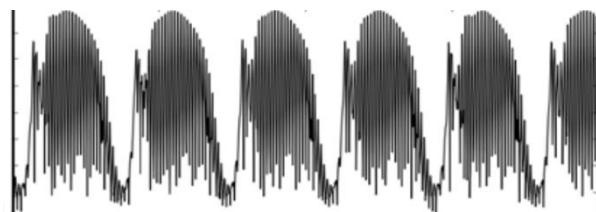
F Bohm, et al.
PRE (2015).

Low-frequency fluctuations



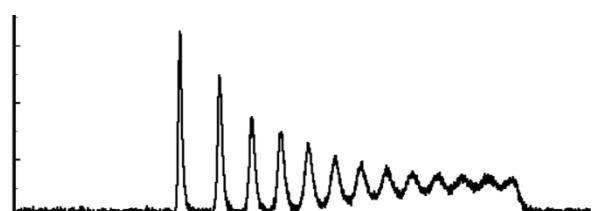
A Torcini, et al. *PRA* (2006)

Regular pulse packages



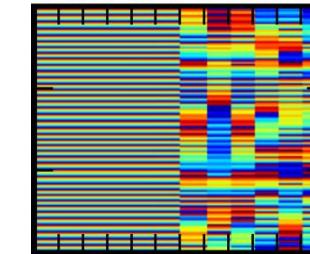
S Ruschel, S Yanchuk. *Chaos* (2017)

Relaxation oscillations



B Liu, et al. *Opt Express* (2021)

Chimera states



F Bohm, A Zakharova,
E Scholl, K Ludge.
PRE (2015).

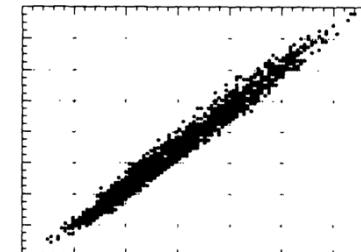
AM Hagerstrom, et al.
Nat Phys (2012).

Crowd sync



S Mahler, AA Friesem, N Davidson. *PRR* (2020)

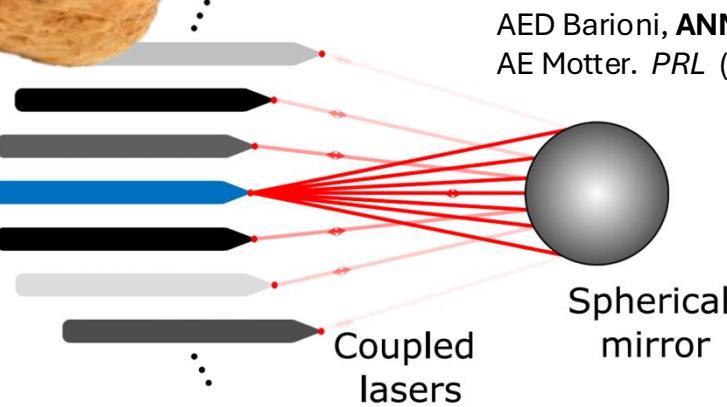
Chaos sync



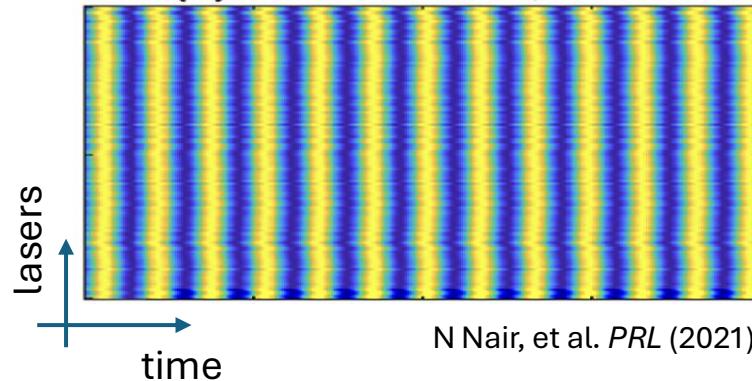
R Roy, KS Thornburg.
PRL (1994).

Laser sync

Find a mechanism that forces the laser beams to interact & sync

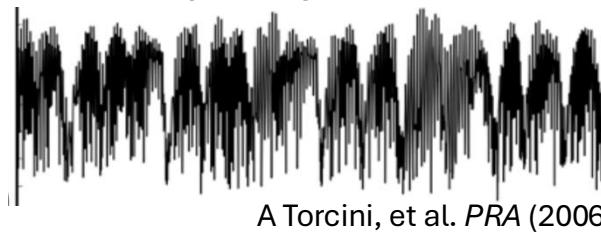


Frequency synchronization



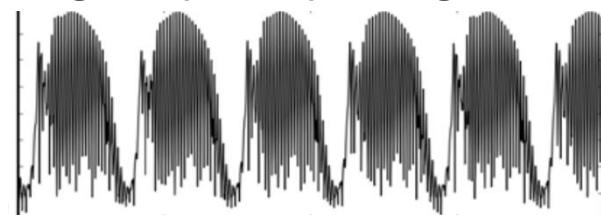
N Nair, et al. *PRL* (2021)

Low-frequency fluctuations



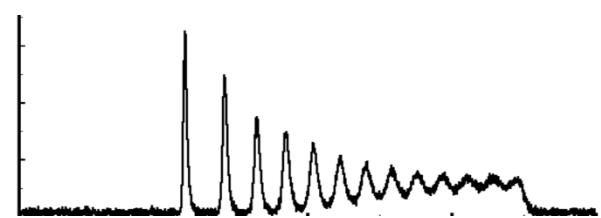
A Torcini, et al. *PRA* (2006)

Regular pulse packages



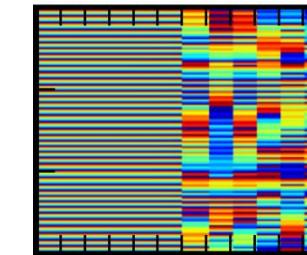
S Ruschel, S Yanchuk. *Chaos* (2017)

Relaxation oscillations



B Liu, et al. *Opt Express* (2021)

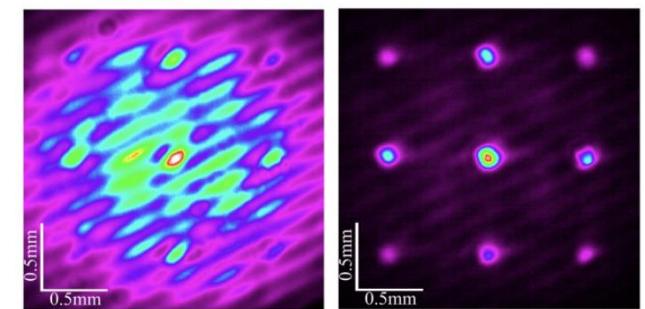
Chimera states



F Bohm, A Zakharova, E Scholl, K Ludge. *PRE* (2015).

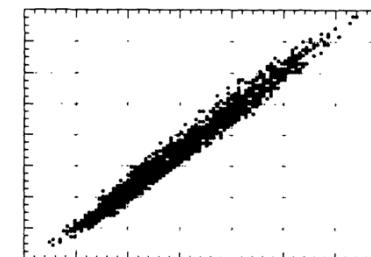
AM Hagerstrom, et al. *Nat Phys* (2012).

Crowd sync



S Mahler, AA Friesem, N Davidson. *PRR* (2020)

Chaos sync



R Roy, KS Thornburg. *PRL* (1994).

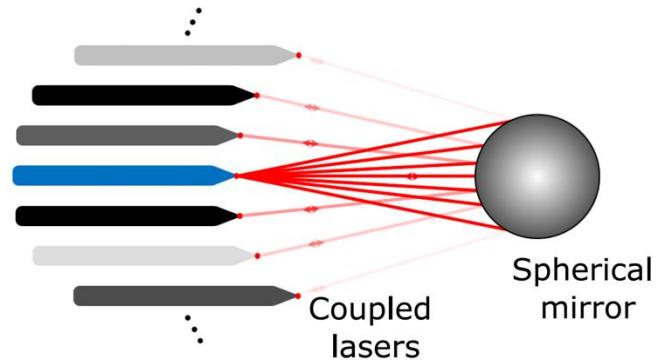
Lang-Kobayashi model

for single-mode semiconductor diode lasers
(e.g., GaAs, InP, GaN)

Electric field dynamics

$$\dot{E}_j(t) = \frac{1 + i\alpha_j}{2} (G_j - \gamma) E_j(t) + i\omega_j E_j(t) + \kappa_j \sum_{k=1}^M A_{jk} E_k(t - \tau_{jk}),$$

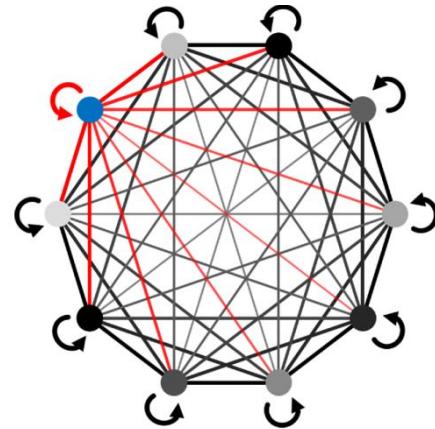
phase-amplitude coupling natural frequency delayed-coupling (external cavity)



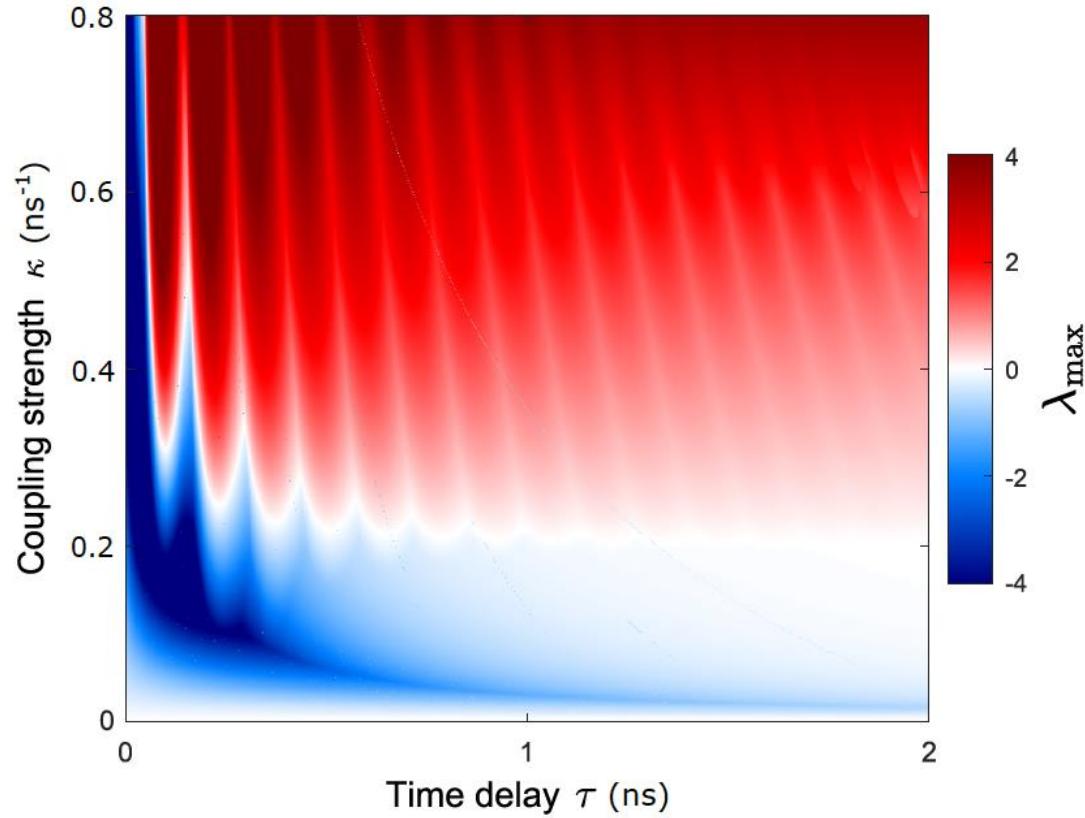
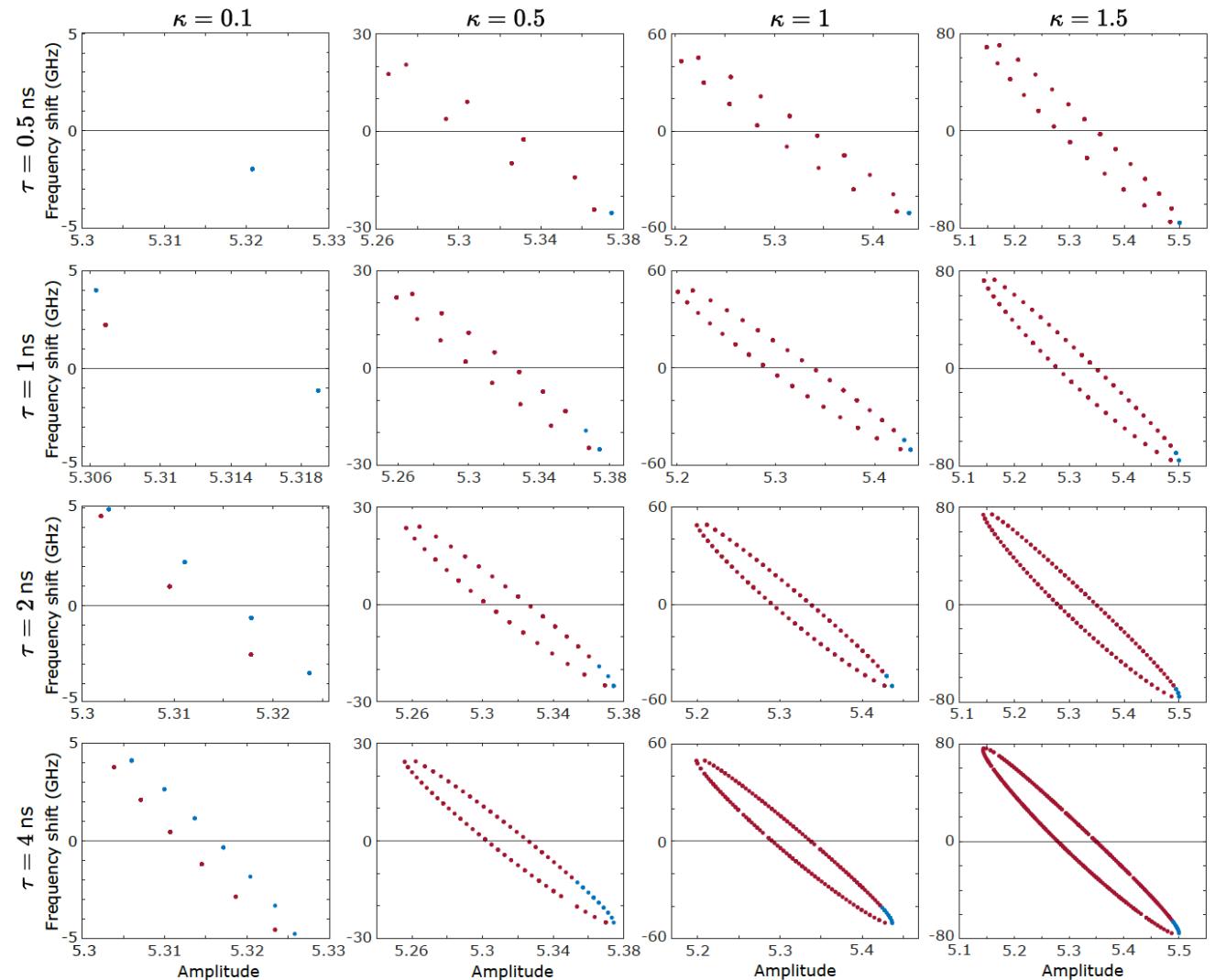
Carrier number dynamics

$$\dot{N}_j(t) = J_0 - \gamma_n N_j(t) - G_j |E_j(t)|^2,$$

current source damping media gain



Multistability of the LK model

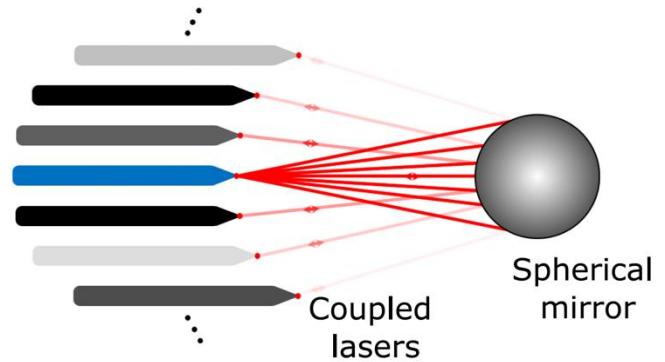
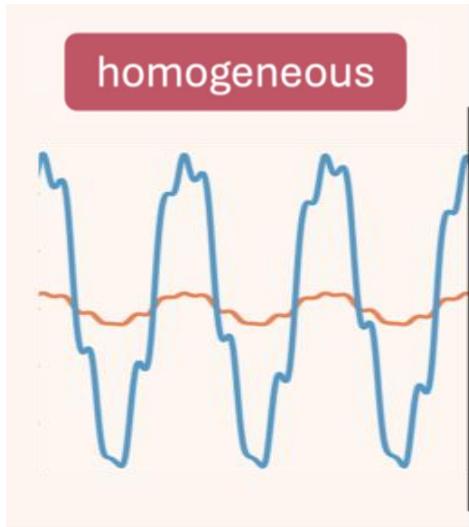


Disorder-promoted sync

Electric field dynamics

$$\dot{E}_j(t) = \frac{1 + i\alpha_j}{2} (G_j - \gamma) E_j(t) + i\omega_j E_j(t) + \kappa_j \sum_{k=1}^M A_{jk} E_k(t - \tau_{jk}),$$

phase-amplitude coupling natural frequency delayed-coupling (external cavity)

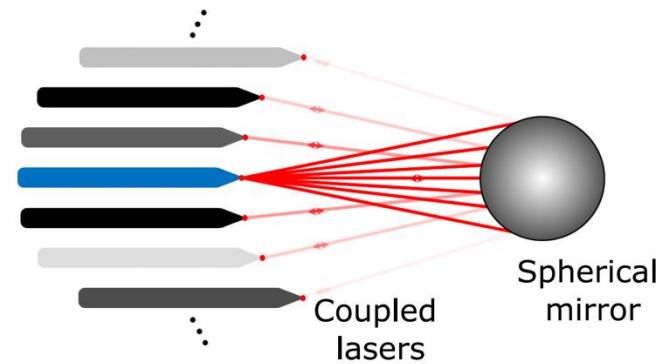
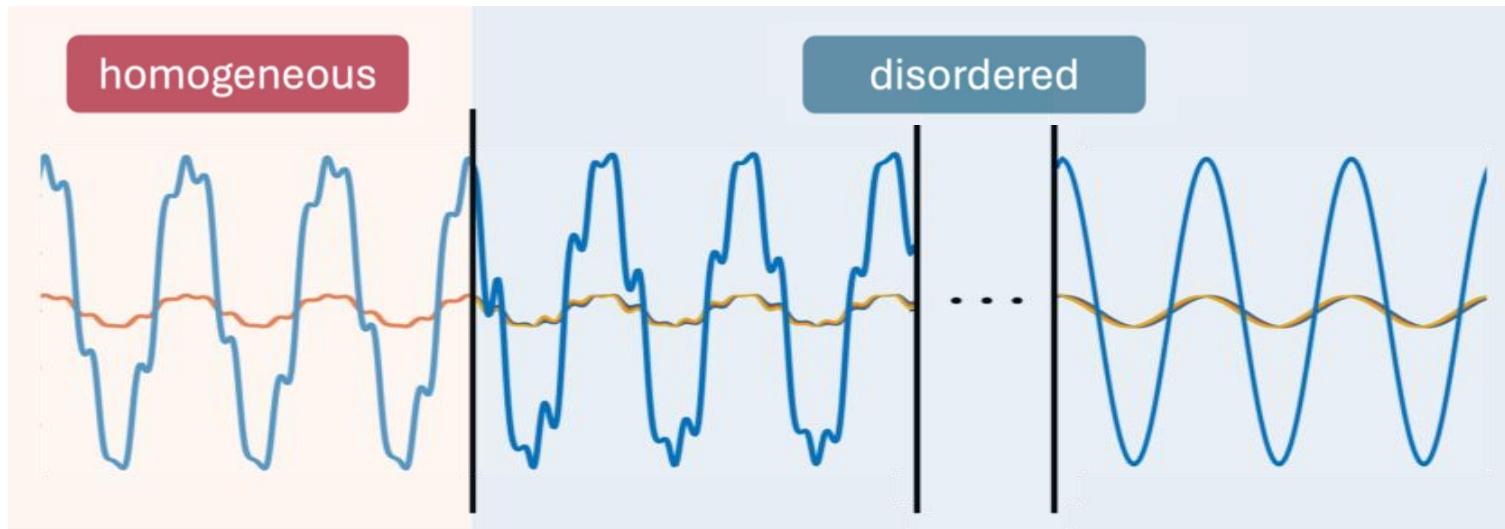


Disorder-promoted sync

Electric field dynamics

$$\dot{E}_j(t) = \frac{1 + i\alpha_j}{2} (G_j - \gamma) E_j(t) + i\omega_j E_j(t) + \kappa_j \sum_{k=1}^M A_{jk} E_k(t - \tau_{jk}),$$

phase-amplitude coupling natural frequency delayed-coupling (external cavity)

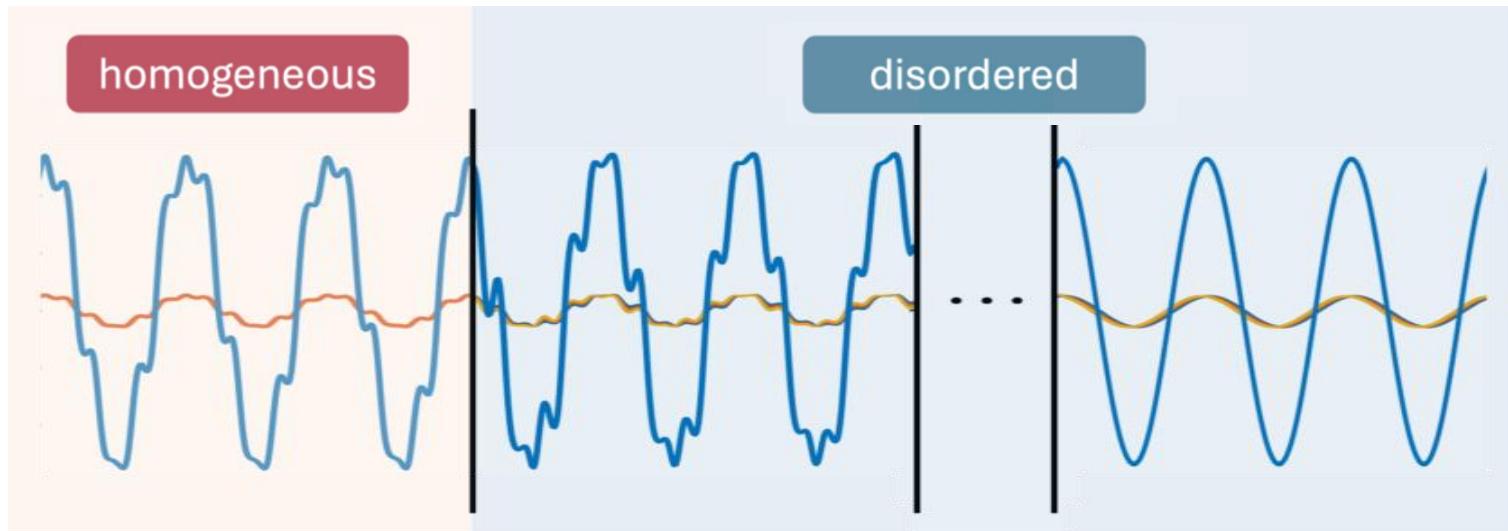
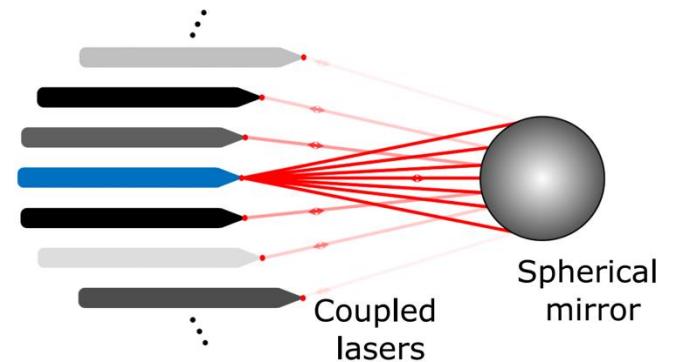
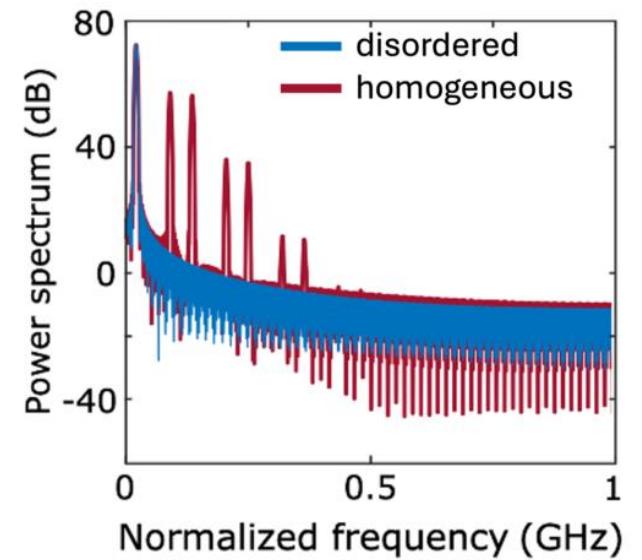


Disorder-promoted sync

Electric field dynamics

$$\dot{E}_j(t) = \frac{1 + i\alpha_j}{2} (G_j - \gamma) E_j(t) + i\omega_j E_j(t) + \kappa_j \sum_{k=1}^M A_{jk} E_k(t - \tau_{jk}),$$

phase-amplitude coupling natural frequency delayed-coupling (external cavity)



Some stability analysis to study it

Nonlinear time-delay system (LK model)

$$\dot{\mathbf{x}}_j(t) = \underbrace{\mathbf{f}_j(\mathbf{x}_j(t))}_{\text{laser dynamics}} + \underbrace{\kappa_j \sum_{k=1}^M A_{jk} \mathbf{h}(\mathbf{x}_j(t), \mathbf{x}_k(t - \tau))}_{\text{delayed coupling}}$$

Linearization around the desired synchronous state $E_j(t) = r_j^* e^{i(\Omega t + \delta_j^*)}$

$$\dot{\boldsymbol{\eta}}(t) = J_1 \boldsymbol{\eta}(t) + J_2 \boldsymbol{\eta}(t - \tau)$$

Stability analysis

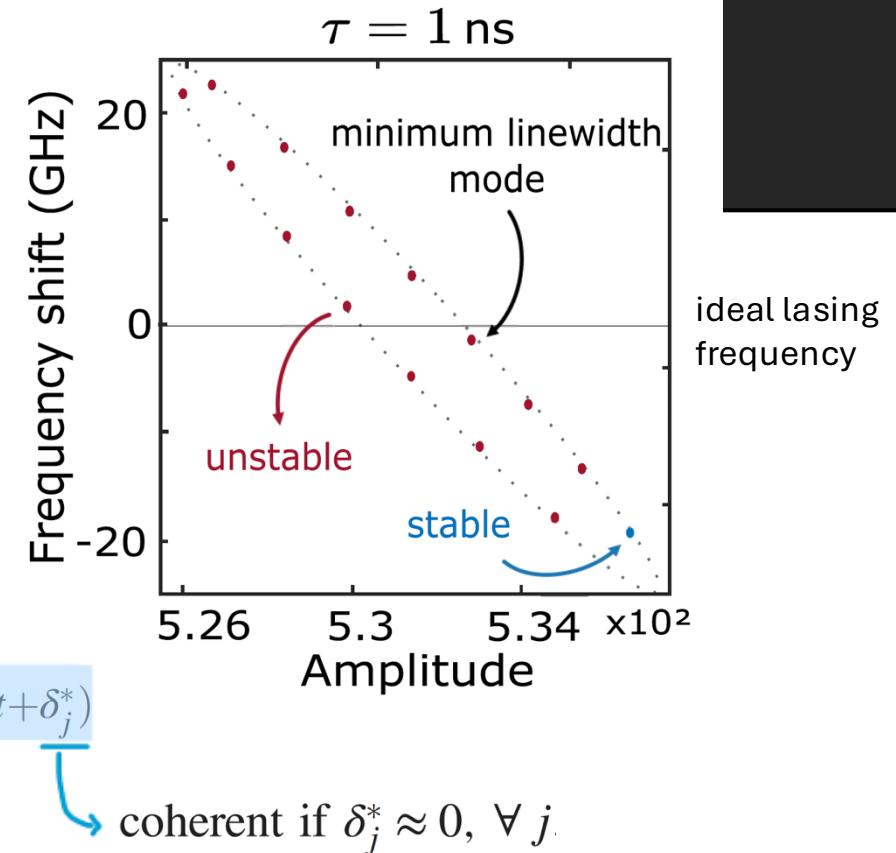
Nonlinear time-delay system (LK model)

$$\dot{\mathbf{x}}_j(t) = \mathbf{f}_j(\mathbf{x}_j(t)) + \kappa_j \sum_{k=1}^M A_{jk} \mathbf{h}(\mathbf{x}_j(t), \mathbf{x}_k(t - \tau))$$

laser dynamics delayed coupling

Linearization around the desired synchronous state $E_j(t) = r_j^* e^{i(\Omega t + \delta_j^*)}$

$$\dot{\boldsymbol{\eta}}(t) = J_1 \boldsymbol{\eta}(t) + J_2 \boldsymbol{\eta}(t - \tau)$$



coherent if $\delta_j^* \approx 0, \forall j$

Stability analysis

Nonlinear time-delay system (LK model)

$$\dot{\mathbf{x}}_j(t) = \mathbf{f}_j(\mathbf{x}_j(t)) + \kappa_j \sum_{k=1}^M A_{jk} \mathbf{h}(\mathbf{x}_j(t), \mathbf{x}_k(t - \tau))$$

laser dynamics delayed coupling

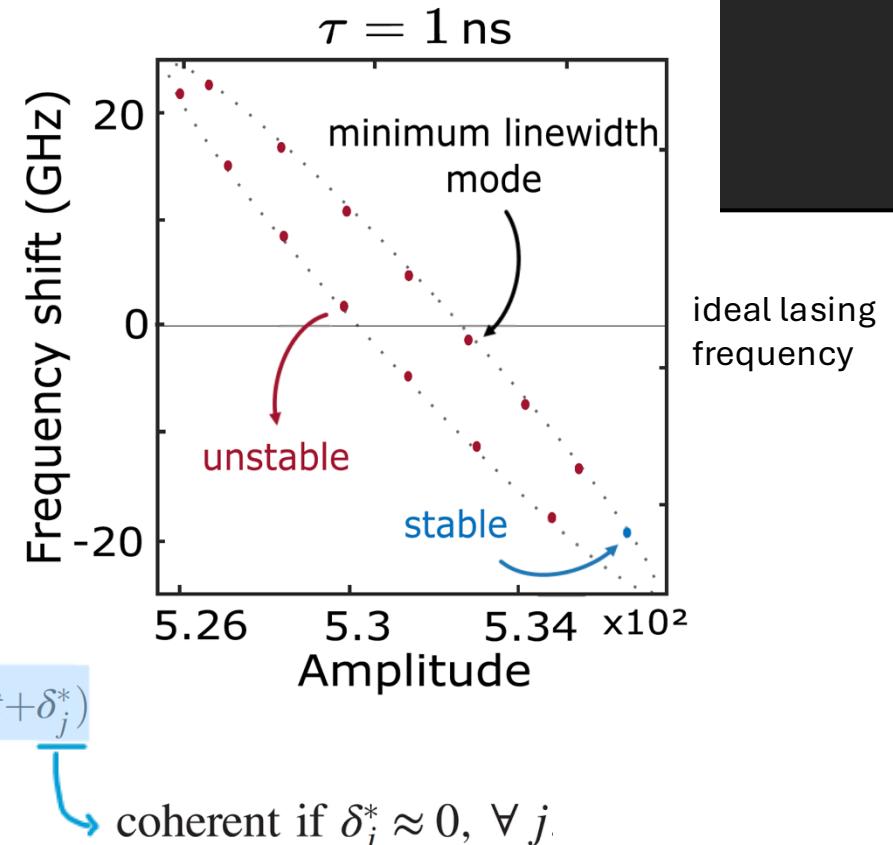
Linearization around the desired synchronous state $E_j(t) = r_j^* e^{i(\Omega t + \delta_j^*)}$

$$\dot{\boldsymbol{\eta}}(t) = J_1 \boldsymbol{\eta}(t) + J_2 \boldsymbol{\eta}(t - \tau)$$

Solve characteristic equation to find the (generalized) eigenvalues λ_ℓ

$$\det(J_1 + J_2 e^{-\lambda_\ell \tau} - \lambda_\ell I_{3M}) = 0 \quad \text{using MATLAB package DDE-BIFTOOL}$$

Synchronous state is stable iff $\lambda_{\max} = \max \operatorname{Re}\{\lambda_\ell\} < 0$



Main result

Nonlinear time-delay system (LK model)

$$\dot{\mathbf{x}}_j(t) = \underbrace{\mathbf{f}_j(\mathbf{x}_j(t))}_{\text{laser dynamics}} + \kappa_j \underbrace{\sum_{k=1}^M A_{jk} \mathbf{h}(\mathbf{x}_j(t), \mathbf{x}_k(t - \tau))}_{\text{delayed coupling}}$$

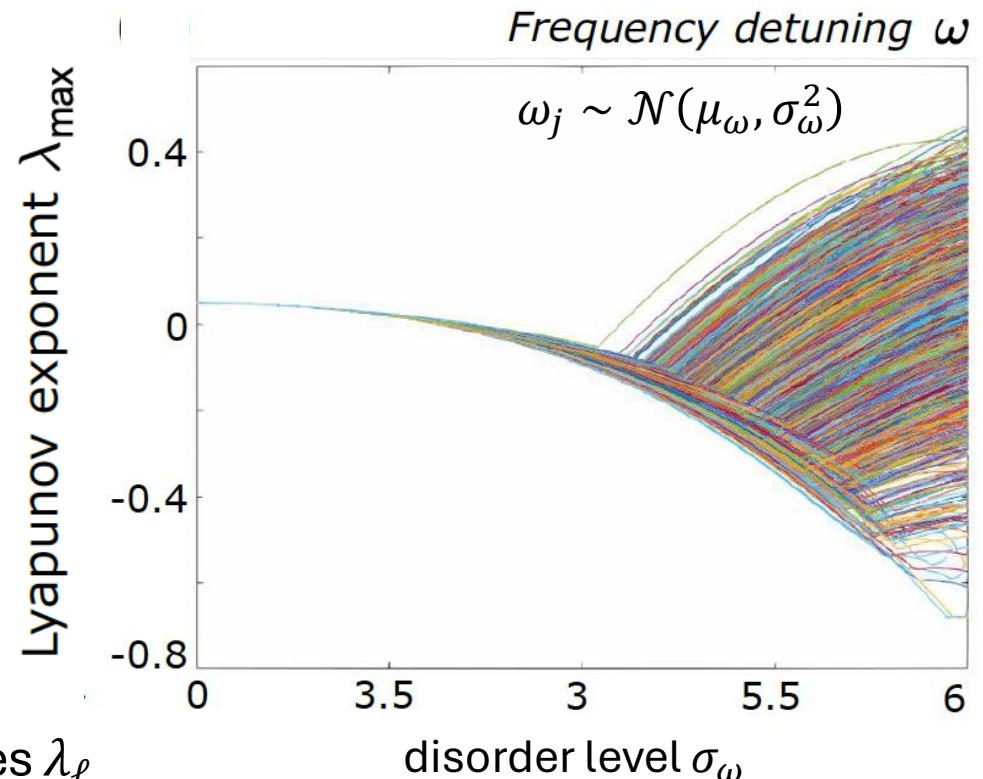
Linearization around the desired synchronous state

$$\dot{\boldsymbol{\eta}}(t) = J_1 \boldsymbol{\eta}(t) + J_2 \boldsymbol{\eta}(t - \tau) \quad E_j(t) = r_j^* e^{i(\Omega t + \delta_j^*)}$$

Solve characteristic equation to find the (generalized) eigenvalues λ_ℓ

$$\det(J_1 + J_2 e^{-\lambda_\ell \tau} - \lambda_\ell I_{3M}) = 0 \quad \text{using MATLAB package DDE-BIFTOOL}$$

Synchronous state is stable iff $\lambda_{\max} = \max \operatorname{Re}\{\lambda_\ell\} < 0$



Main result

Nonlinear time-delay system (LK model)

$$\dot{\mathbf{x}}_j(t) = \mathbf{f}_j(\mathbf{x}_j(t)) + \kappa_j \sum_{k=1}^M A_{jk} \mathbf{h}(\mathbf{x}_j(t), \mathbf{x}_k(t - \tau))$$

laser dynamics delayed coupling

Linearization around the desired synchronous state

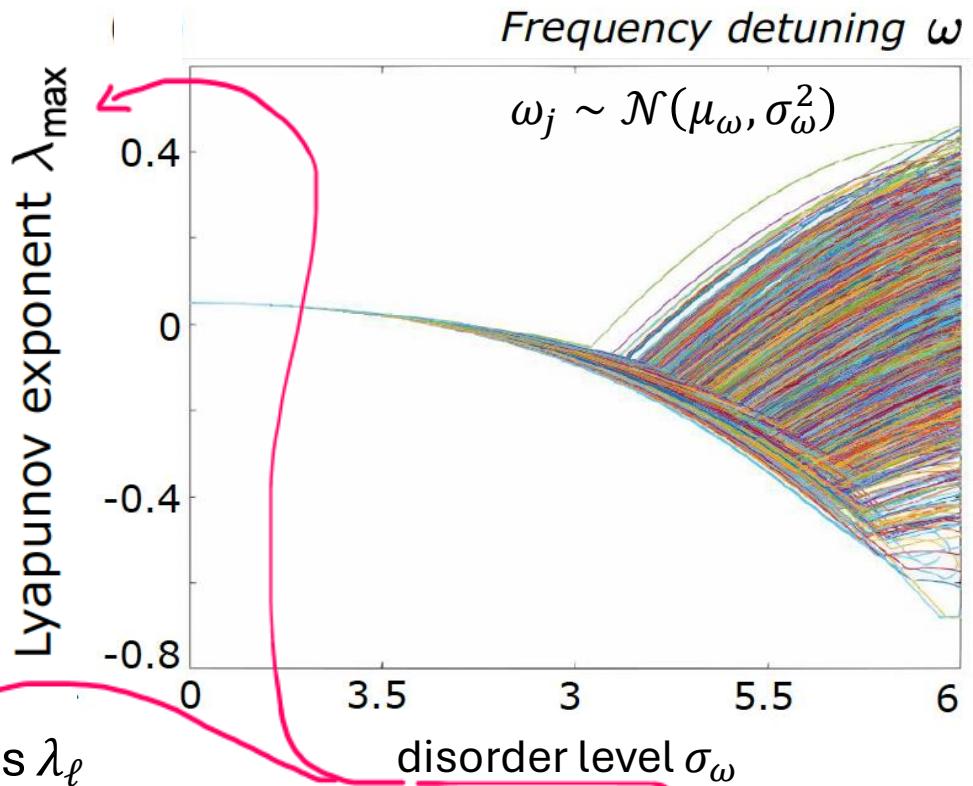
$$\dot{\boldsymbol{\eta}}(t) = J_1 \boldsymbol{\eta}(t) + J_2 \boldsymbol{\eta}(t - \tau)$$

$$E_j(t) = \underline{r}_j^* e^{i(\Omega t + \delta_j^*)}$$

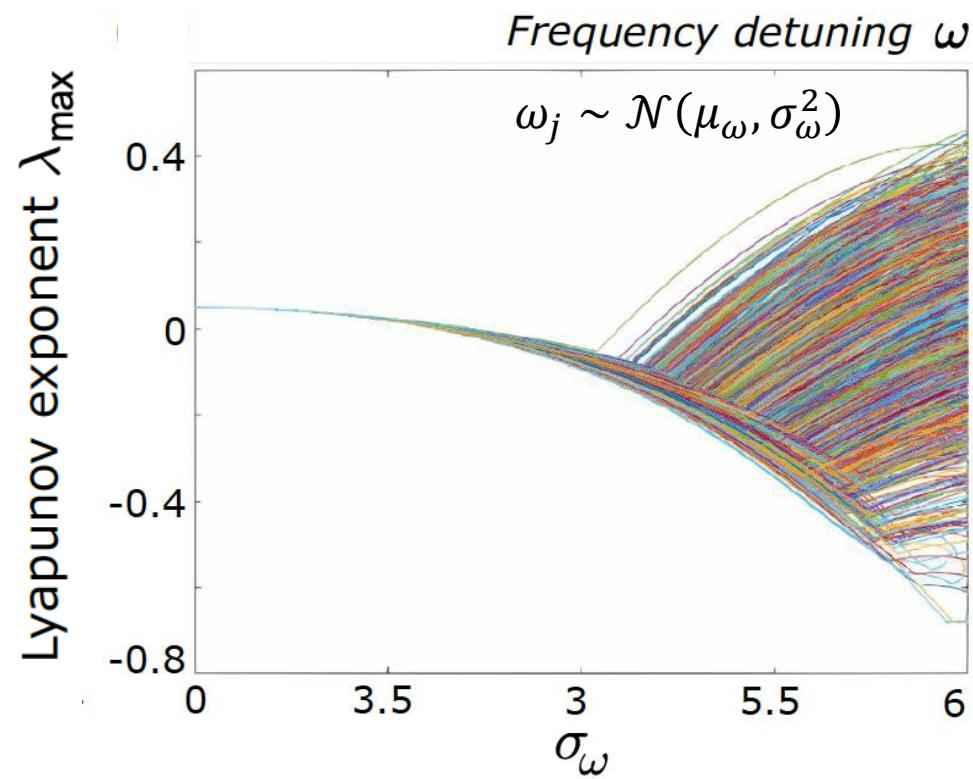
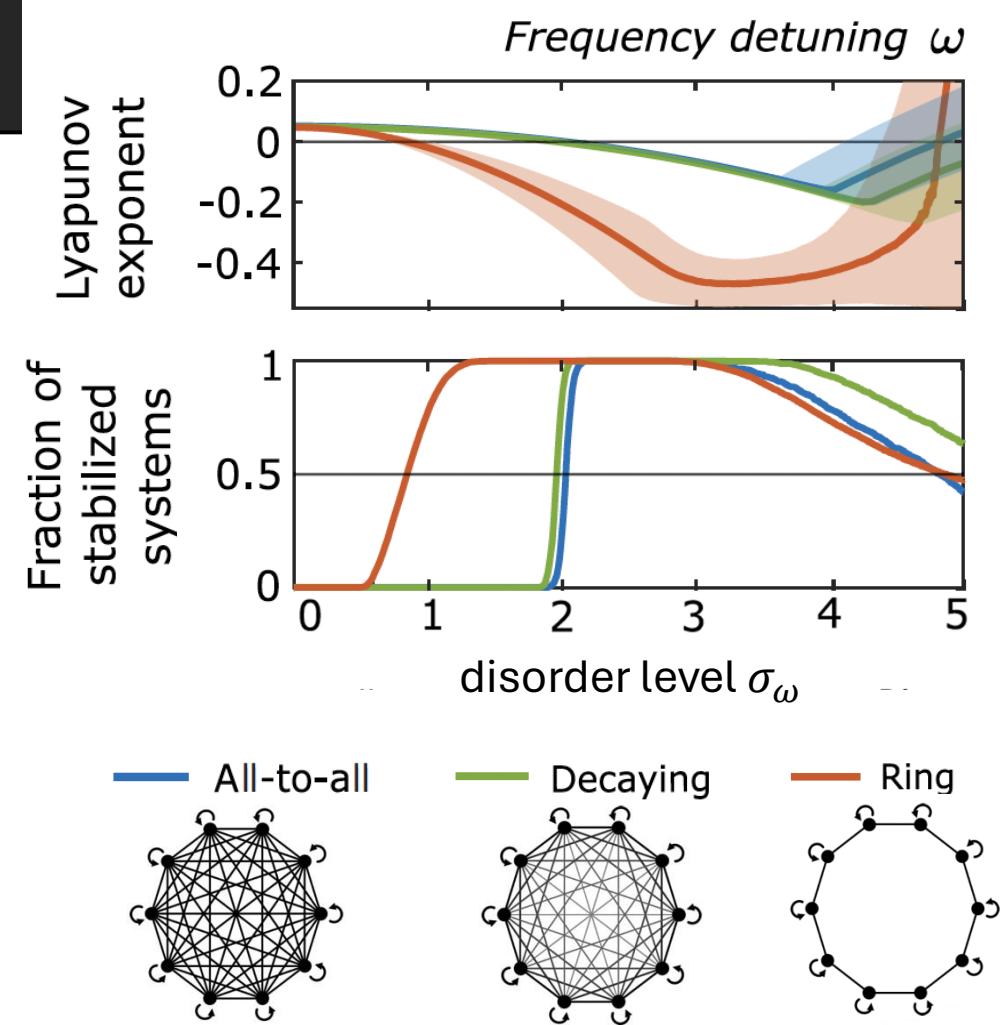
Solve characteristic equation to find the (generalized) eigenvalues λ_ℓ

$$\det(J_1 + J_2 e^{-\lambda_\ell \tau} - \lambda_\ell I_{3M}) = 0 \quad \text{using MATLAB package DDE-BIFTOOL}$$

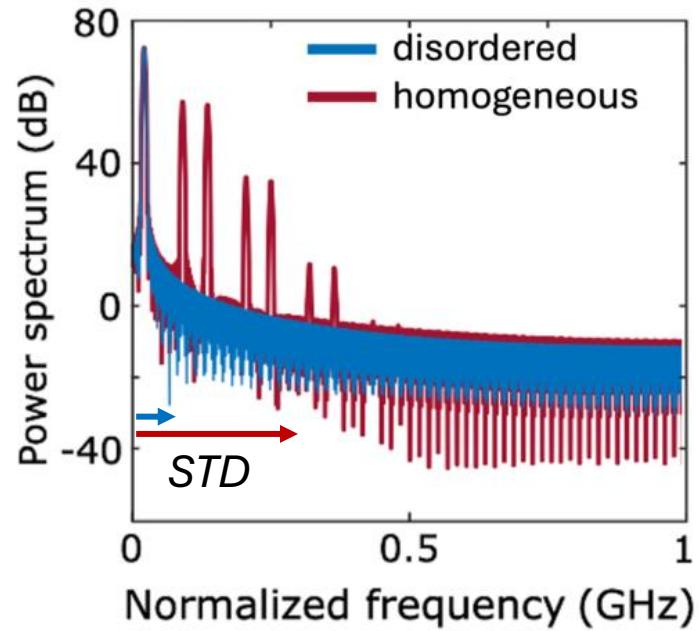
Synchronous state is stable iff $\lambda_{\max} = \max \operatorname{Re}\{\lambda_\ell\} < 0$



Disorder-promoted sync

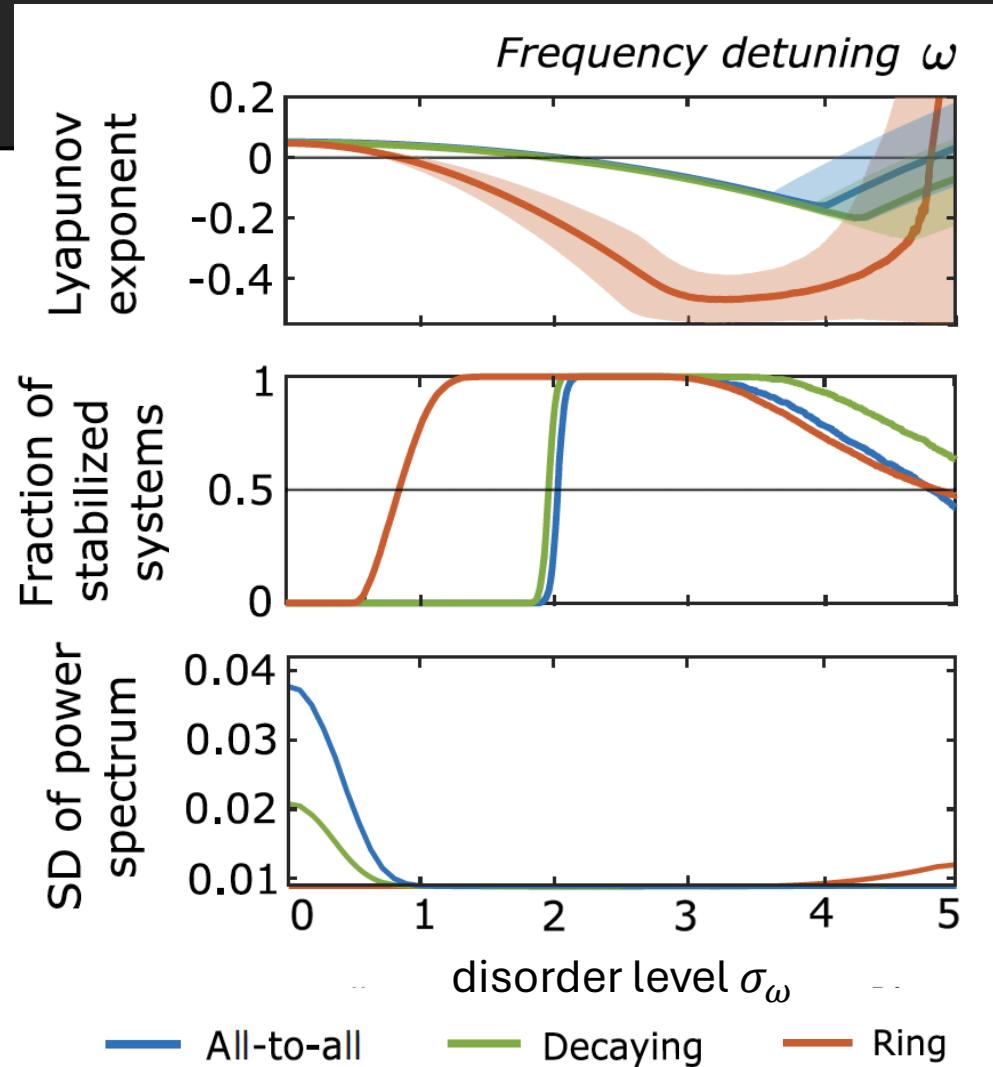


Disorder-promoted sync

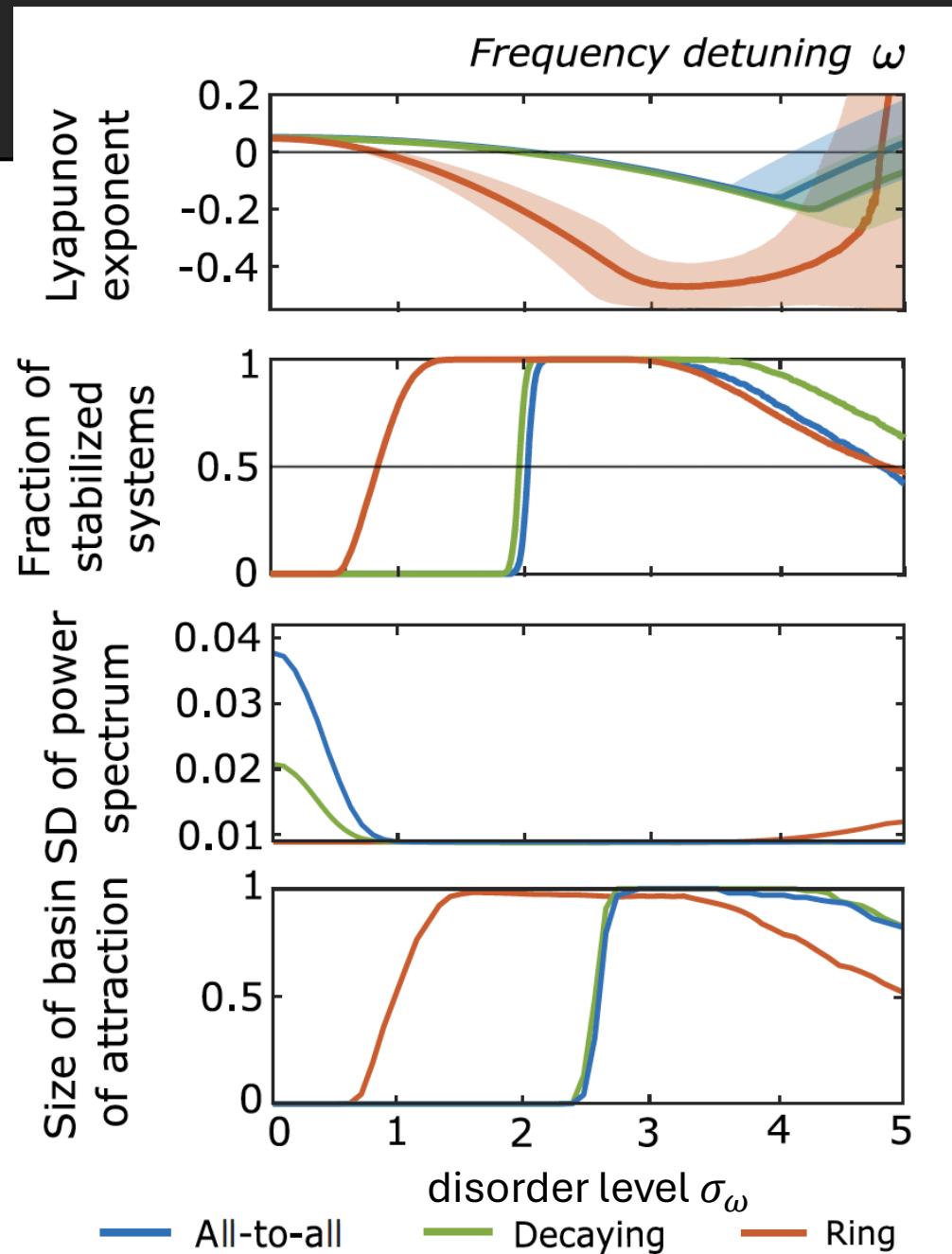


the synchronous state is stable
 $\lambda_{\max} < 0$

the synchronous state is coherent
 $\delta_j^* \approx 0, \forall j$

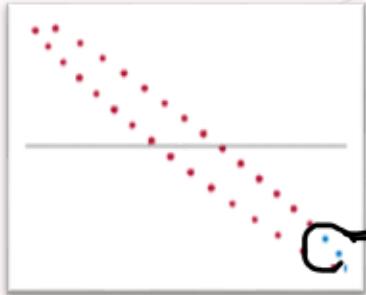
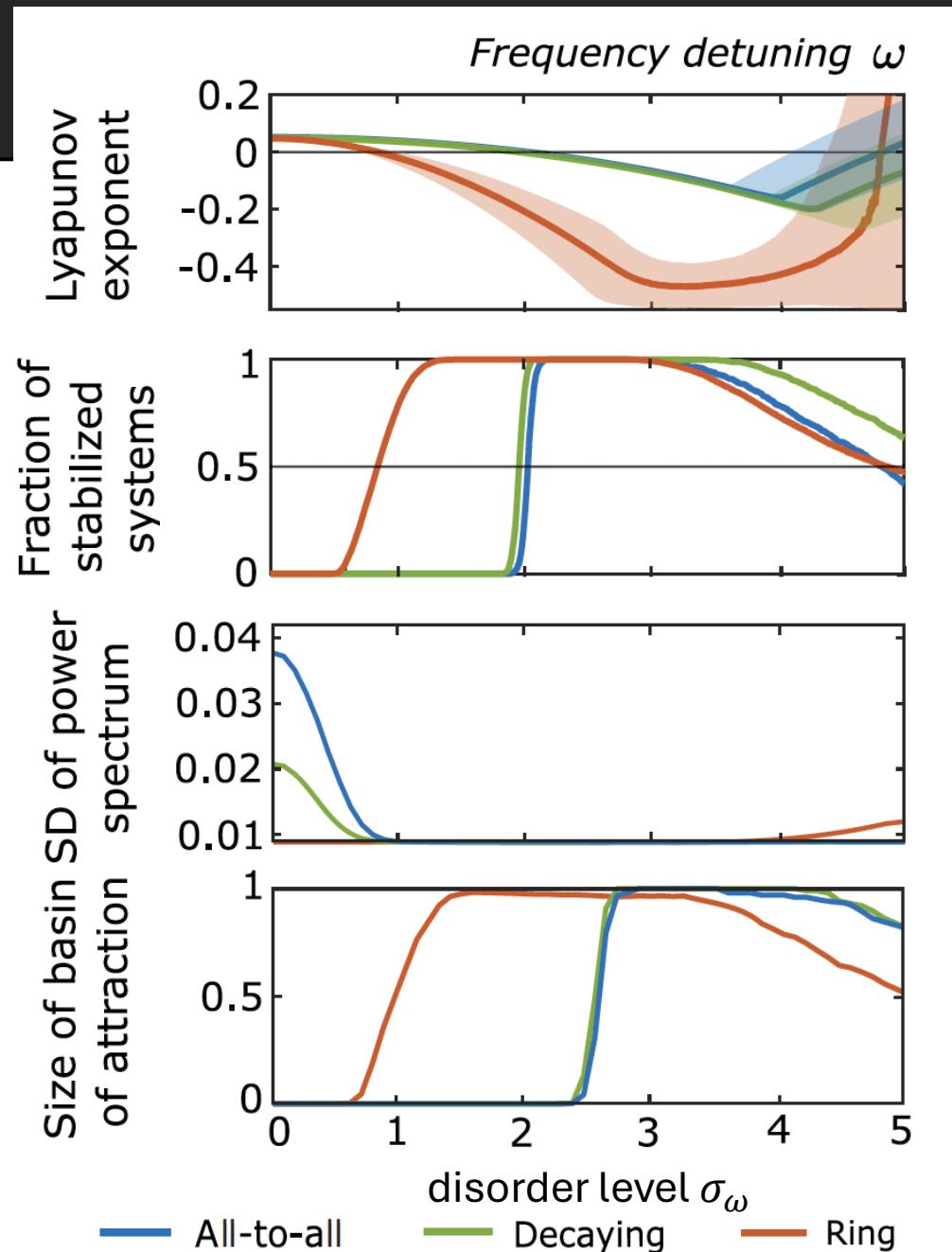


Disorder-promoted sync



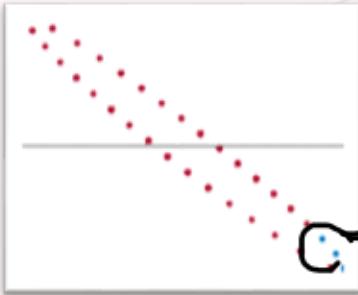
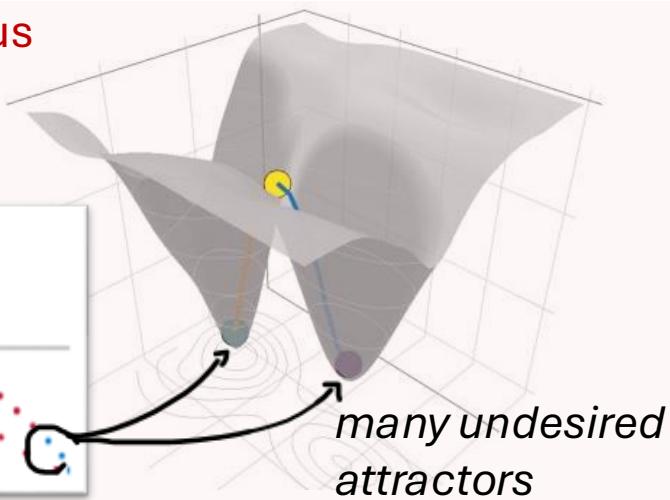
Disorder-promoted sync

homogeneous
system,
multistable

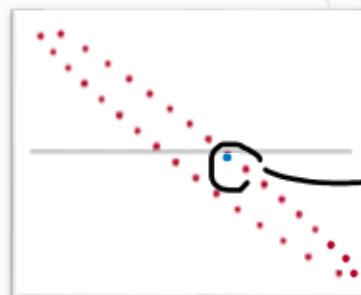
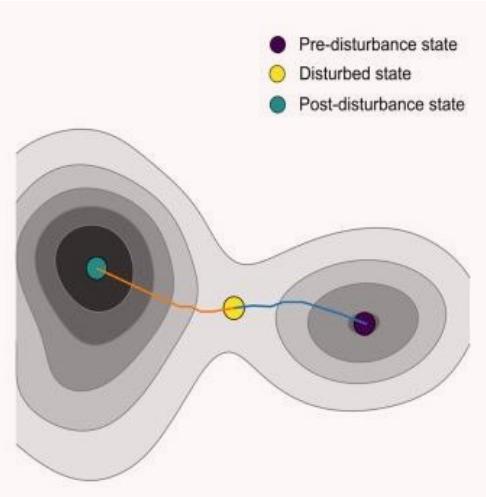
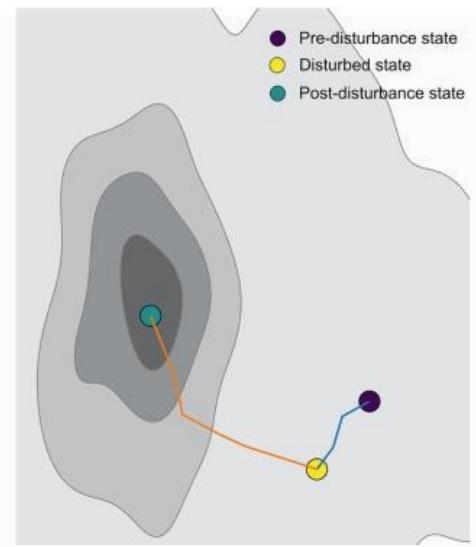
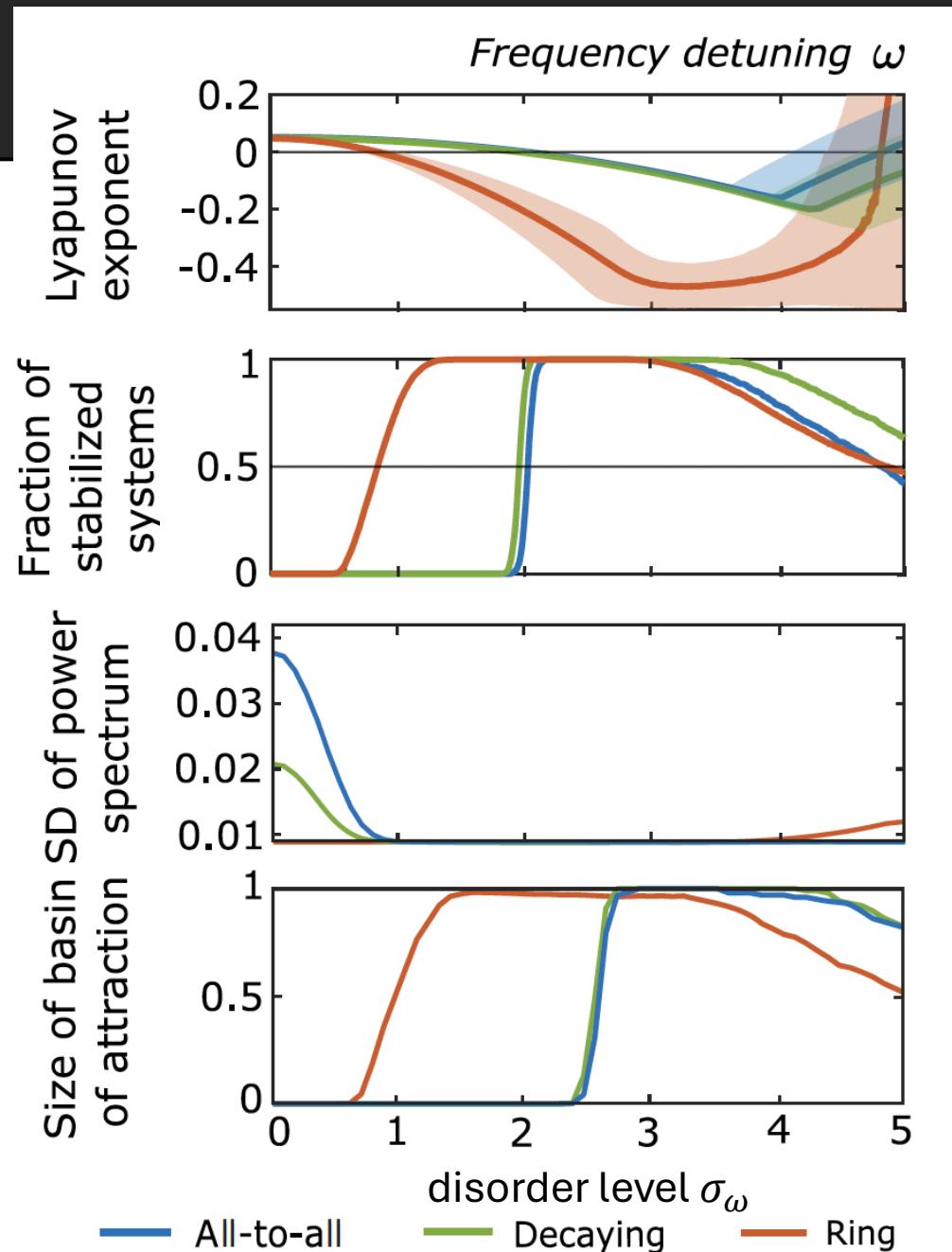


Disorder-promoted sync

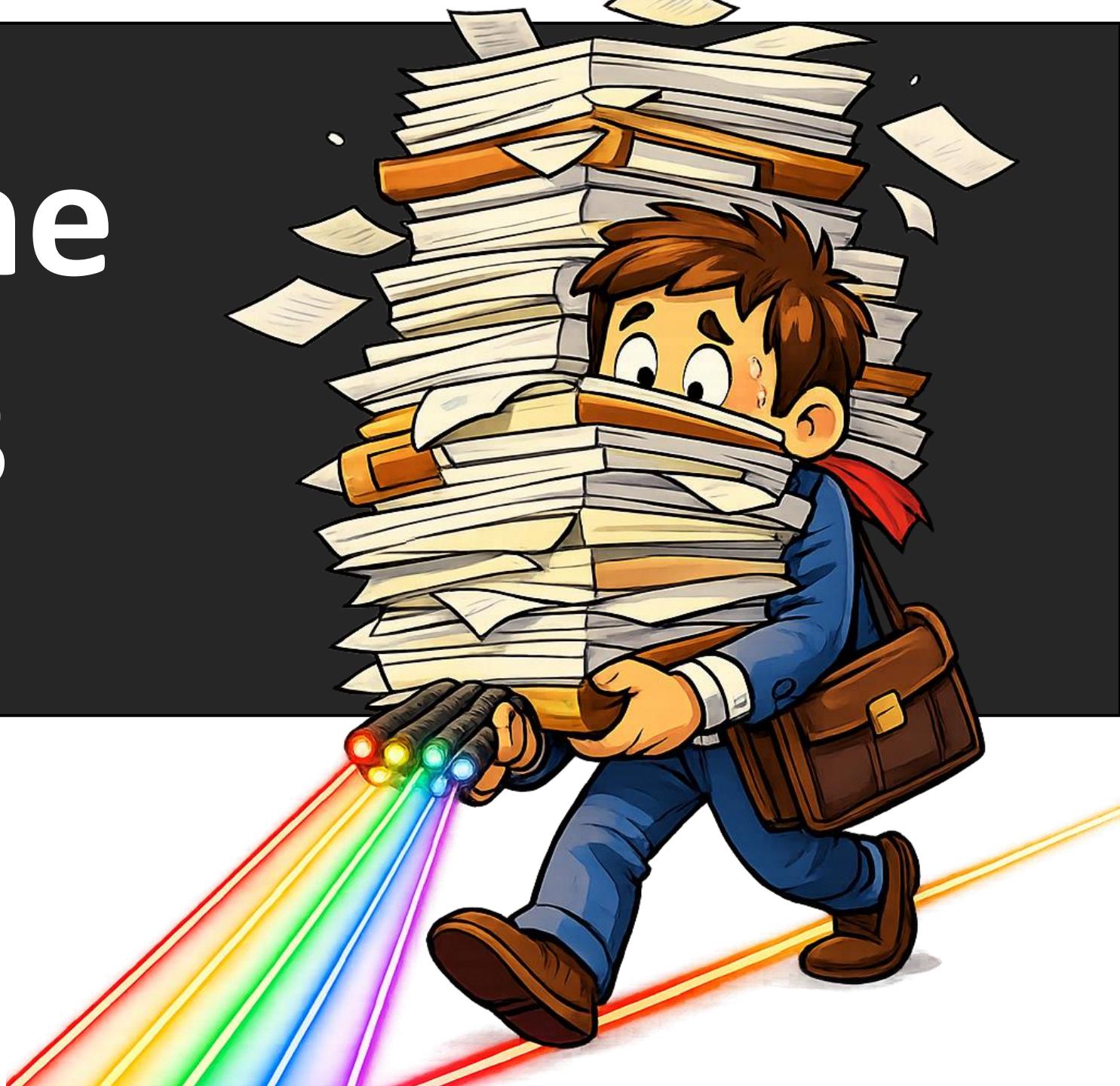
homogeneous system, multistable



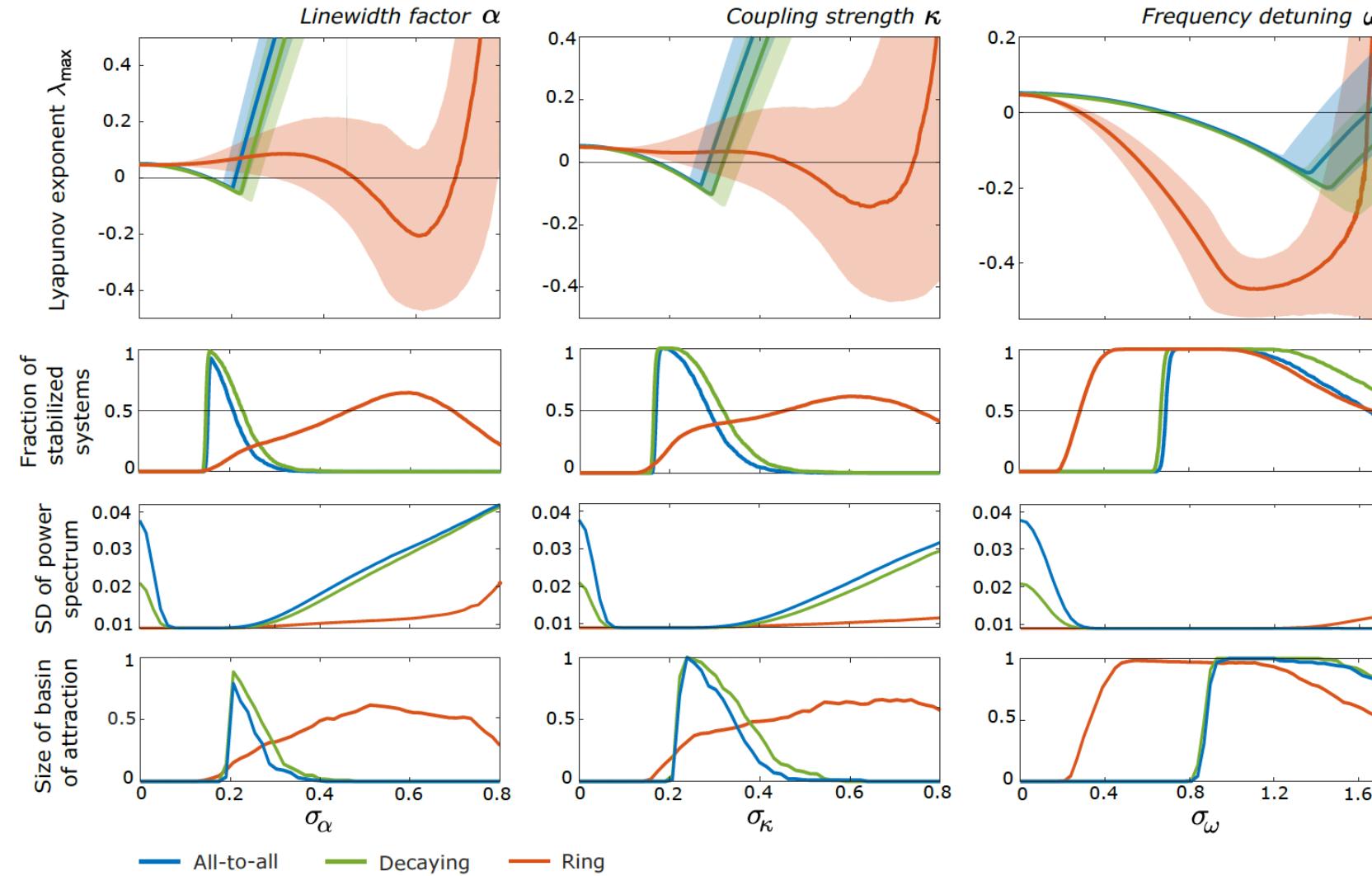
disordered system, monostable



Take-home messages

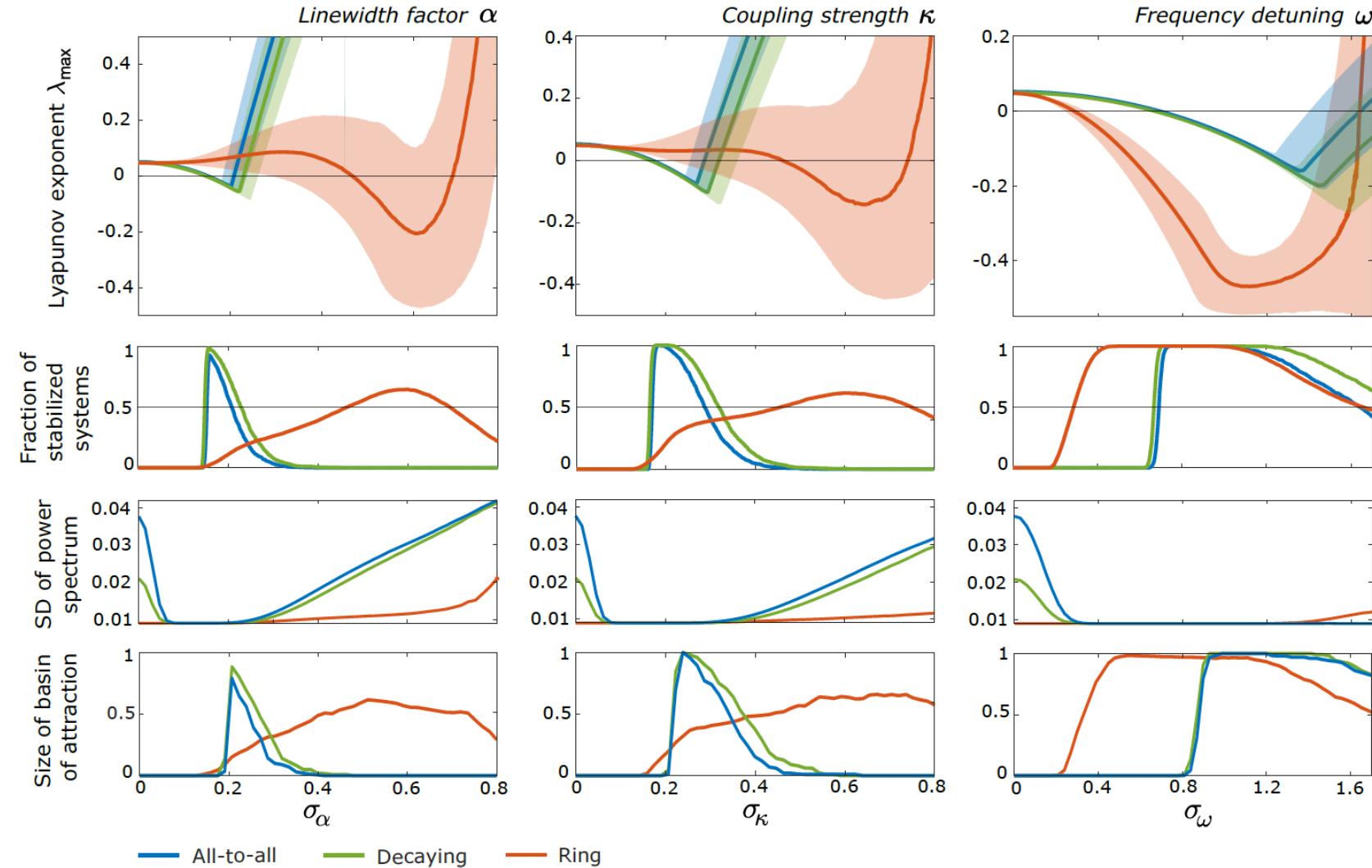


Take-home message #1



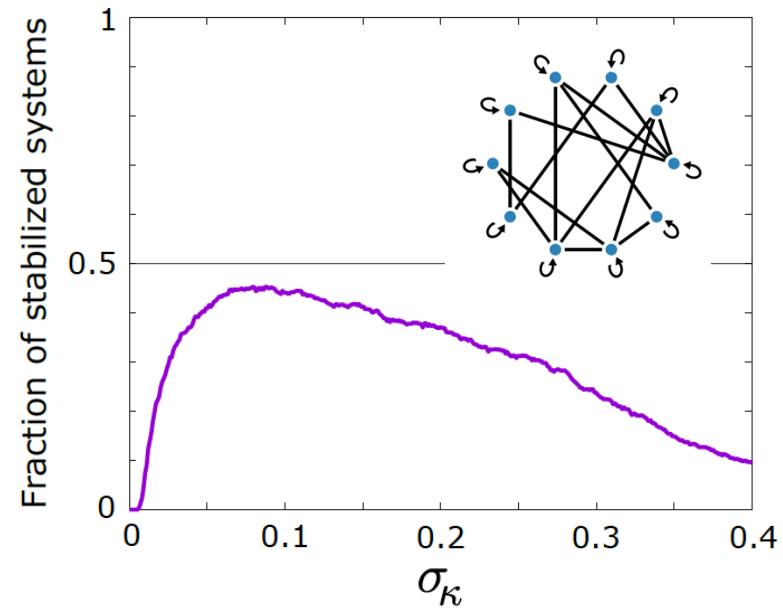
*Disorder provides a reliable mechanism for coherent beam generation, regardless of the choice of **parameter**, ...*

Take-home message #1

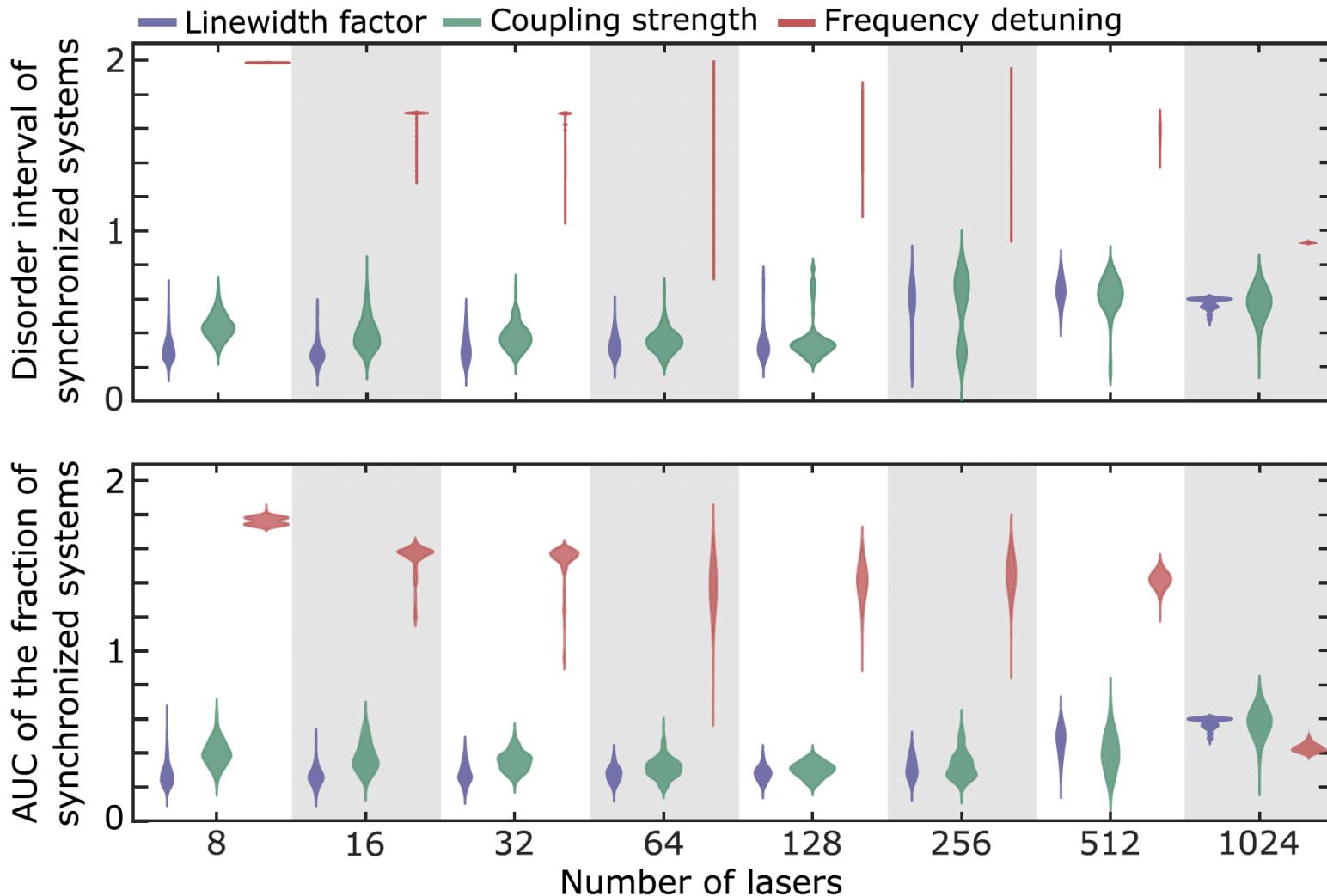


*Disorder provides a reliable mechanism for coherent beam generation, regardless of the choice of parameter, **network structure**,*

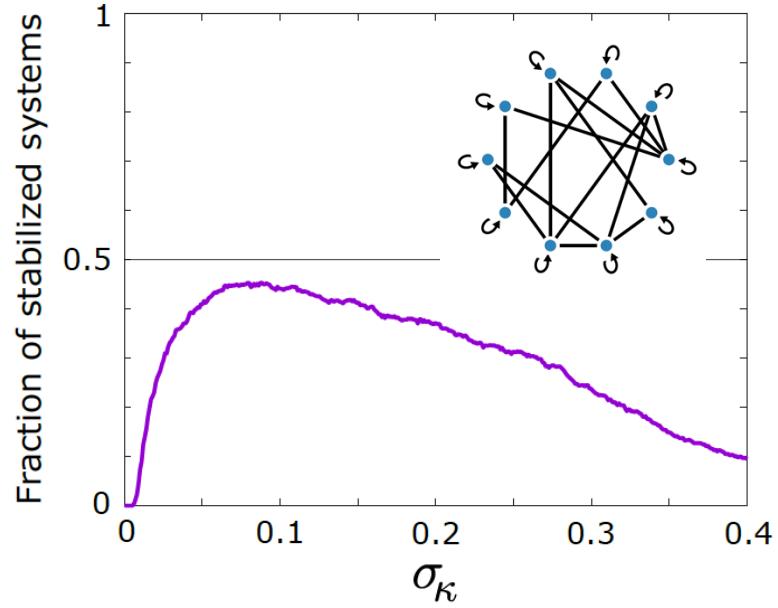
•



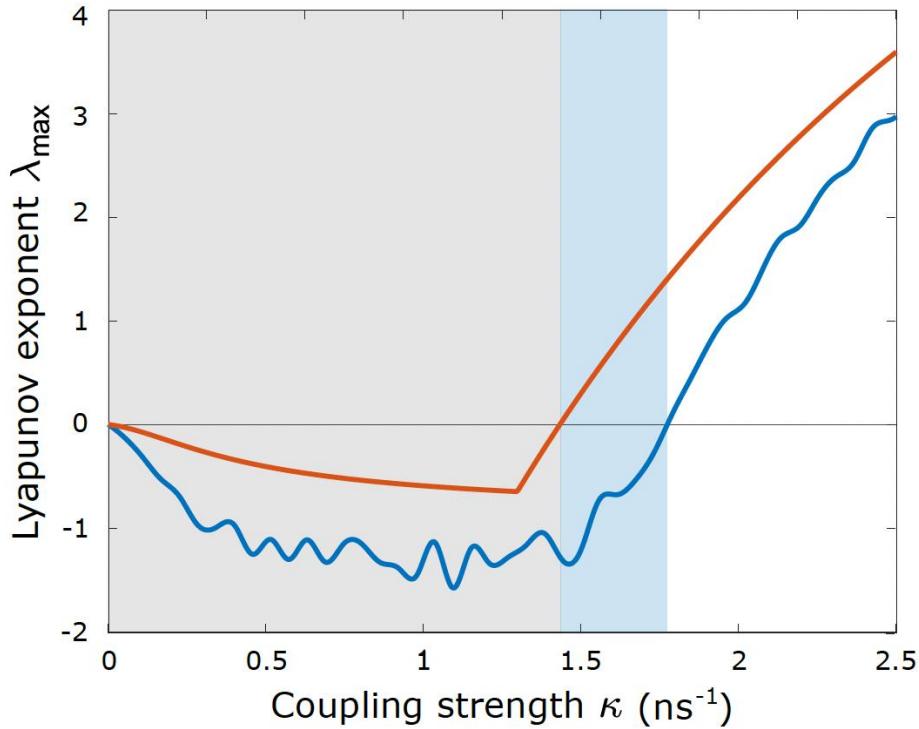
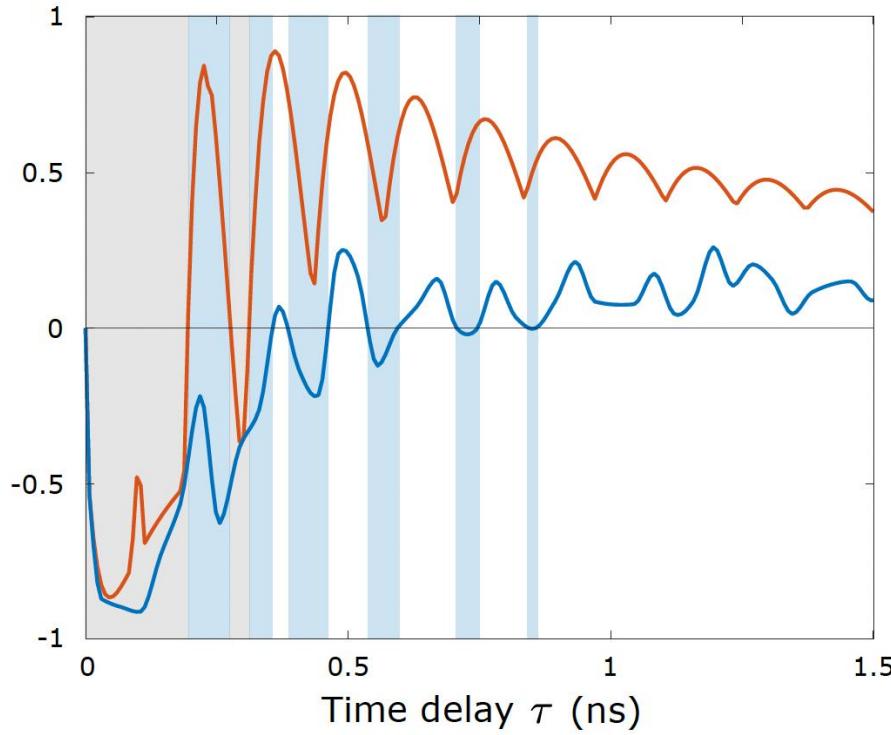
Take-home message #1



*Disorder provides a reliable mechanism for coherent beam generation, regardless of the choice of parameter, network structure, and **number of lasers**.*



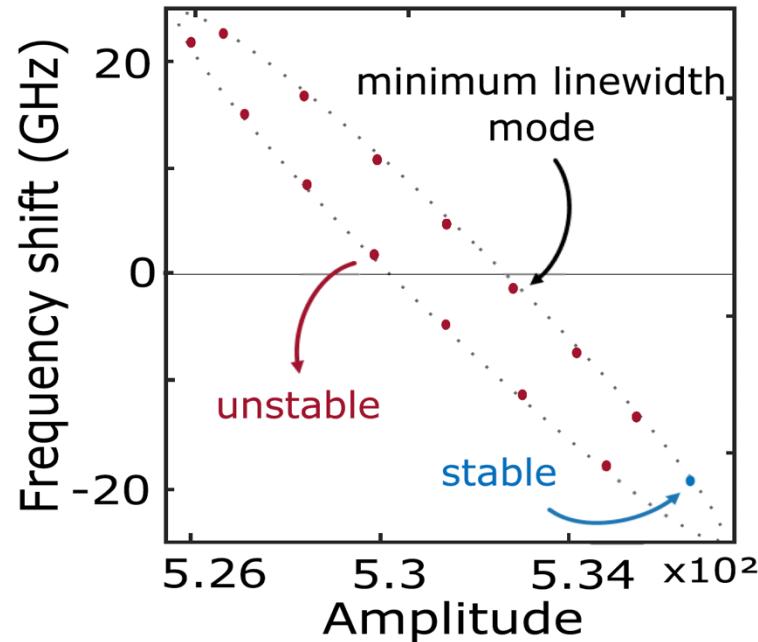
Take-home message #2



Disordered systems exhibit larger stability margins, outperforming homogeneous ones

Interpretability

Pre-specified synchronous state: $E_j(t) = r_j^* e^{i(\Omega t + \delta_j^*)}$



disorder: $\omega_j \sim \mathcal{N}(0, \sigma^2)$

Why does disorder drive
the stability of this state?

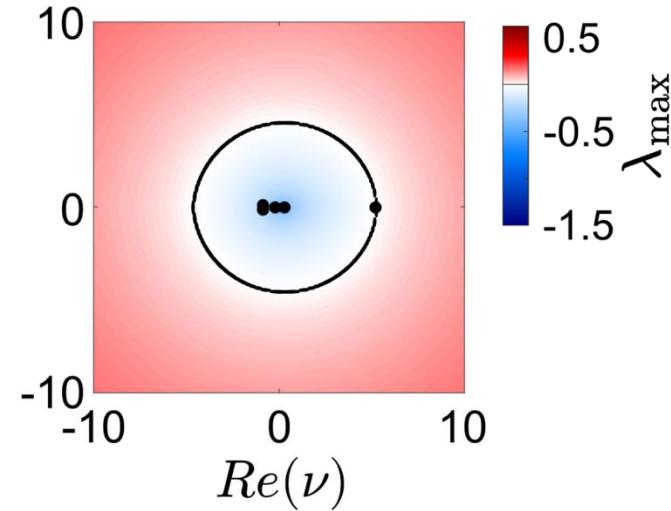
Interpretability

Master stability function analysis (identical lasers)

$$\dot{\xi}_j(t) = [\underbrace{D^{(0)}\mathbf{f} + \kappa d D^{(0)}\mathbf{h}}_{\text{3-dimensional vector (mode)}} + \underbrace{\kappa\nu D^{(\tau)}\mathbf{h}}_{\text{instantaneous dynamics}} \xi_j(t) + \underbrace{\kappa\nu D^{(\tau)}\mathbf{h}}_{\text{network eigenvalue}} \xi_j(t - \tau) + \underbrace{\kappa\nu D^{(\tau)}\mathbf{h}}_{\text{delayed dynamics}} \xi_j(t - \tau)$$

For non-delayed systems: Pecora, Carroll. *PRL* (1998).

For delayed systems: Choe, Dahms, Hövel, Schöll. *PRE* (2010).



Interpretability

Master stability function analysis (identical lasers)

For non-delayed systems: Pecora, Carroll. *PRL* (1998).
For delayed systems: Choe, Dahms, Hövel, Schöll. *PRE* (2010).

$$\dot{\xi}_j(t) = [D^{(0)}\mathbf{f} + \kappa d D^{(0)}\mathbf{h}]\xi_j(t) + \kappa \nu D^{(\tau)}\mathbf{h}\xi_j(t - \tau)$$

3-dimensional
vector (mode)

instantaneous
dynamics

network
eigenvalue delayed
dynamics

Master stability function analysis (non-identical lasers)

For non-delayed systems: Sugitani, Zhang, Motter. *PRL* (2021).
For delayed systems: Barioni, Montanari, Motter. *PRL* (2025).

$$\dot{\xi}_j(t) = [D^{(0)}\mathbf{f} + \kappa d D^{(0)}\mathbf{h}]\xi_j(t) + \kappa \nu D^{(\tau)}\mathbf{h}\xi_j(t - \tau) + \sum_k^M \Delta_{jk}^{(0)}\xi_k(t) + \sum_k^M \Delta_{jk}^{(\tau)}\xi_k(t - \tau)$$

3-dimensional
vector (mode)

instantaneous
dynamics

network
eigenvalue

mode mixing

Disorder: Good or Bad?

Nair, Hu, Berrill, Wiesenfeld, Braiman. *PRL* (2021)

→ Lang-Kobayashi model

misaligned time delays

Zhang, Ocampo-Espindola, Kiss, Motter. *PNAS* (2021)

→ Stuart-Landau model

frequency detuning

Pando, Gadasi, Bernstein, Stroev, Friesem, Davidson. *PRL* (2024)

→ experimental + LRE

frequency detuning

Disorder: Good or Bad?

Nair, Hu, Berrill, Wiesenfeld, Braiman. *PRL* (2021)

Zhang, Ocampo-Espindola, Kiss, Motter. *PNAS* (2021)

Pando, Gadasi, Bernstein, Stroev, Friesem, Davidson. *PRL* (2024) → experimental + LRE

→ Lang-Kobayashi model

→ Stuart-Landau model

misaligned time delays

frequency detuning

frequency detuning

Laser class	Laser rate equations (weak phase-amplitude coupling)	Lang-Kobayashi model (strong phase-amplitude coupling)
Class A (reduction)	$\dot{E}_j = \frac{1}{\tau_c} (G_j - \gamma) E_j + i\omega_j E_j + \frac{\kappa_j}{\tau_c} \sum_k A_{jk} E_k(t - \tau)$	$\dot{E}_j = \frac{1 + i\alpha_j}{2} (G_j(t) - \gamma) E_j + i\omega_j E_j + k_j \sum_k A_{jk} E_k(t - \tau)$
Class B	$\dot{E}_j = \frac{1}{\tau_c} (G_j - \gamma) E_j + i\omega_j E_j + \frac{\kappa_j}{\tau_c} \sum_k A_{jk} E_k(t - \tau)$ $\dot{G}_j = \frac{1}{\tau_f} \left(J_0 - G_j \left(s E_j ^2 + 1 \right) \right)$	$\dot{E}_j = \frac{1 + i\alpha_j}{2} (G_j(t) - \gamma) E_j + i\omega_j E_j + \kappa_j \sum_k A_{jk} E_k(t - \tau)$ $\dot{N}_j = J_0 - \gamma_n N_j - G_j(t) E_j ^2$
Class C (extension)	$\dot{E}_j = -\frac{\gamma}{\tau_c} E_j + \frac{1}{\tau_c} P_j + i\omega_j E_j + \frac{\kappa}{\tau_c} \sum_k A_{jk} E_k(t - \tau)$ $\dot{P}_j = \gamma_{\perp} (-P_j + G_j E_j)$ $\dot{G}_j = \frac{1}{\tau_f} \left(J_0 - G_j \left(s E_j ^2 + 1 \right) \right)$	$\dot{E}_j = -\frac{\gamma}{2} E_j - P_j + i\omega_j E_j + \kappa_j \sum_k A_{jk} E_k(t - \tau)$ $\dot{P}_j = -(\gamma_{\perp} + i\Delta) P_j + G_j(t) E_j$ $\dot{N}_j = J_0 - \gamma_n N_j - G_j(t) E_j ^2$

Rajarshi Roy (UMD)

Disorder: Good or Bad?

Nair, Hu, Berrill, Wiesenfeld, Braiman. *PRL* (2021)

Zhang, Ocampo-Espindola, Kiss, Motter. *PNAS* (2021)

Pando, Gadasi, Bernstein, Stroev, Friesem, Davidson. *PRL* (2024) → experimental + LRE

→ Lang-Kobayashi model

→ Stuart-Landau model

misaligned time delays

frequency detuning

frequency detuning

Laser class	Laser rate equations (weak phase-amplitude coupling)	Lang-Kobayashi model (strong phase-amplitude coupling)
Class A (reduction)	$\dot{E}_j = \frac{1}{\tau_c} (G_j - \gamma) E_j + i\omega_j E_j + \frac{\kappa_j}{\tau_c} \sum_k A_{jk} E_k(t - \tau)$	$\dot{E}_j = \frac{1 + i\alpha_j}{2} (G_j(t) - \gamma) E_j + i\omega_j E_j + k_j \sum_k A_{jk} E_k(t - \tau)$
Class B	$\dot{E}_j = \frac{1}{\tau_c} (G_j - \gamma) E_j + i\omega_j E_j + \frac{\kappa_j}{\tau_c} \sum_k A_{jk} E_k(t - \tau)$ $\dot{G}_j = \frac{1}{\tau_f} \left(J_0 - G_j \left(s E_j ^2 + 1 \right) \right)$	$\dot{E}_j = \frac{1 + i\alpha_j}{2} (G_j(t) - \gamma) E_j + i\omega_j E_j + \kappa_j \sum_k A_{jk} E_k(t - \tau)$ $\dot{N}_j = J_0 - \gamma_n N_j - G_j(t) E_j ^2$
Class C (extension)	$\dot{E}_j = -\frac{\gamma}{\tau_c} E_j + \frac{1}{\tau_c} P_j + i\omega_j E_j + \frac{\kappa}{\tau_c} \sum_k A_{jk} E_k(t - \tau)$ $\dot{P}_j = \gamma_{\perp} (-P_j + G_j E_j)$ $\dot{G}_j = \frac{1}{\tau_f} \left(J_0 - G_j \left(s E_j ^2 + 1 \right) \right)$	$\dot{E}_j = -\frac{\gamma}{2} E_j - P_j + i\omega_j E_j + \kappa_j \sum_k A_{jk} E_k(t - \tau)$ $\dot{P}_j = -(\gamma_{\perp} + i\Delta) P_j + G_j(t) E_j$ $\dot{N}_j = J_0 - \gamma_n N_j - G_j(t) E_j ^2$

Rajarshi Roy (UMD)

Lasers sync because of (not despite!) heterogeneity when... time delays are significant and there is strong phase-amplitude coupling in gain media (e.g., semiconductor lasers)

What's next?

*Disorder for
physical computing*

A Allibhoy, **AN Montanari**, F Pasqualetti, AE Motter.
Global optimization through heterogeneous oscillator Ising machines.
Proceedings of the IEEE Conference on Decision and Control (2025).
arXiv:2505.17027

Acknowledgments

montanariarthur.com

slides available at my website

PHYSICAL REVIEW LETTERS 135, 197401 (2025)

Interpretable Disorder-Promoted Synchronization and Coherence in Coupled Laser Networks

Ana Elisa D. Barioni,^{1,2} Arthur N. Montanari^{1,2} and Adilson E. Motter^{1,2,3,4}

¹*Center for Network Dynamics, Northwestern University, Evanston, Illinois 60208, USA*

²*Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA*

³*Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA*

⁴*Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois 60208, USA*

Ana Barioni

Adilson Motter

Center for
Network Dynamics

