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G Wang, et al. Terahertz sensing and communication towards future intelligence connected networks. Huawei Research Report (2022).
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Potential applications of THz gap:

- imaging, spectroscopy, sensing (ideal penetration)

- high-speed, free-space communication (wireless communication, LIDAR)
- THz computing (analog, neuromorphic computing, Ising machines)

Challenge: low power output (P ~ 1 mW per laser)

G Wang, et al. Terahertz sensing and communication towards future intelligence connected networks. Huawei Research Report (2022).
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Laser sync

Low-frequency fluctuations Chimera states
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Electric field dynamics
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Multistability of the LK
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Disorder-promoted sync

Electric field dynamics
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Electric field dynamics
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Disorder-promoted sync

Electric field dynamics
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Some stability analysis to study it

Nonlinear time- delay system (LK model)

X;(1) = ) + K; ZAth ), X (1= 17))

L lkl J
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laser dynamics delayed coupling

Linearization around the desired synchronous state Ej(t) = r*el(gtwi)

J
i(t) = (1) + It —7)
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Solve characteristic equation to find the (generalized) eigenvalues A,
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Frequency detuning w
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Frequency detuning w
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Disorder-promoted sync
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Disorder-promoted sync
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Disorder-promoted sync
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Disorder-promoted sync
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Take-home message #1
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Take-home message #2
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Interpretability
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Interpretability

For non-delayed systems: Pecora, Carroll. PRL (1998).

Master stability function analysis (identical lasers) For delayed systems: Choe, Dahms, Hével, Schéll. PRE (2010).
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Interpretability

- . . . . For non-delayed systems: Pecora, Carroll. PRL (1998).
Master stabi llty function analyS|S (|dentlcal lasers) For delayed systems: Choe, Dahms, Hovel, Scholl. PRE (2010).
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3-dimensional instantaneous network delayed
vector (mode) dynamics eigenvalue dynamics
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Disorder: Good or Bad?

Nair, Hu, Berrill, Wiesenfeld, Braiman. PRL (2021) — Lang-Kobayashi model misaligned time delays
Zhang, Ocampo-Espindola, Kiss, Motter. PNAS (2021) — Stuart-Landau model  frequency detuning
Pando, Gadasi, Bernstein, Stroev, Friesem, Davidson. PRL (2024) — experimental + LRE frequency detuning
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Nair, Hu, Berrill, Wiesenfeld, Braiman. PRL (2021) — Lang-Kobayashi model misaligned time delays
Zhang, Ocampo-Espindola, Kiss, Motter. PNAS (2021) — Stuart-Landau model  frequency detuning
Pando, Gadasi, Bernstein, Stroev, Friesem, Davidson. PRL (2024) — experimental + LRE frequency detuning
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What’s next?

Disorder for
physical computing

A Allibhoy, AN Montanari, F Pasqualetti, AE Motter.
Global optimization through heterogeneous oscillator Ising machines.

Proceedings of the IEEE Conference on Decision and Control (2025).
arXiv:2505.17027
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